Enlisting the AIDS virus to fight cancer

August 29, 2012
Infographic representation of the HIV contamination process. © CNRS Photothèque/www.gregcirade.com

(Medical Xpress)—Can HIV be transformed into a biotechnological tool for improving human health? According to a CNRS team at the Architecture et Réactivité de l'ARN (RNA Architecture and Reactivity) laboratory, the answer is yes. Taking advantage of the HIV replication machinery, the researchers have been able to select a specific mutant protein. Added to a culture of tumor cells in combination with an anticancer drug, this protein improves the effectiveness of the treatment at 1/300 the normal dosage levels. Published in PLoS Genetics on 23 August 2012, these findings could lead to long-term therapeutic applications in the treatment of cancer and other pathologies.

The (HIV), which causes AIDS, uses human cell material to multiply, primarily by inserting its genetic material into the host cells' genome (see illustration below). The distinctive characteristic of HIV is that it mutates constantly, and consequently generates several mutant proteins (or variants) in the course of its successive multiplications. This phenomenon allows the virus to adapt to repeated environmental changes and resist the antiviral treatments that have been developed so far.

At the IBMC (Institut de Biologie Moléculaire et Cellulaire) in Strasbourg, the researchers of the CNRS Architecture et Réactivité de l'ARN laboratory had the idea of using this multiplication strategy to rechannel the effects of the virus for therapeutic purposes, in particular the treatment of cancer.

They first altered the by introducing a human gene that is found in all cells: the gene for deoxycytidine kinase (dCK), a protein that activates anticancer drugs.  Researchers have been trying to produce a more effective form of dCK for several years. Through HIV multiplication, the CNRS team has selected a "library" of nearly 80 mutant proteins and tested them on tumor cells in the presence of an anticancer drug. The results have enabled them to identify a dCK variant that is more effective than the wild-type (non-mutated) protein, inducing the death of tumor cells in culture. In combination with this protein, the anticancer drugs showed identical effectiveness at 1/300 the dose. The possibility of reducing the doses of anticancer drugs would palliate the problems posed by their components' toxicity, reduce their side effects and, most importantly, improve their effectiveness.

One advantage of this experimental technique is that the mutant proteins were tested directly on cells in culture. The next step in the years to come will be preclinical (animal) studies on the isolated . In addition, this experimental system using a normally life-threatening virus is likely to lead to a great many other therapeutic applications.

Explore further: Drug designer: New tool reveals mutations that cause HIV-drug resistance

More information: Retrovolution: HIV-driven Evolution of Cellular Genes and Improvement of Anticancer Drug Activation, Rossolillo P., Winter F., Simon-Loriere E., Gallois-Montbrun S. and Negroni M. PLoS Genetics, 23 August 2012.

Related Stories

Drug designer: New tool reveals mutations that cause HIV-drug resistance

July 8, 2011
Protease inhibitor drugs are one of the major weapons in the fight against HIV, the virus that causes AIDS, but their effectiveness is limited as the virus mutates and develops resistance to the drugs over time. Now a new ...

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.