Researchers find drug-resistant HIV patients with unimpaired immune cells

November 30, 2010, Mayo Clinic

Mayo Clinic researchers have shown why, in a minority of HIV patients, immune function improves despite a lack of response to standard anti-retroviral treatment. In these cases, researchers say, the virus has lost its ability to kill immune cells. The findings appear in the online journal PLoS Pathogens.

The goal of current treatments for HIV is to block the virus from reproducing, thereby allowing the to repair itself. These findings show for the first time that not all HIV viruses are equally bad for the immune system. Patients who harbor these viruses do not develop certain complications of the disease because of mutations that render some HIV drugs ineffective -- but also impair the ability of the virus to cause disease.

"These findings suggest -- in contrast to how these patients have been treated in the past -- that changing treatments might not be needed in order to help the immune system," says Andrew Badley, M.D., Mayo infectious disease researcher and senior author of the study.

HIV causes disease by progressively killing CD4 T cells, whose function is to orchestrate the immune system. Loss of these cells renders patients susceptible to unusual infections and cancers. Over time, HIV mutates and can become resistant to the drugs used for treatment. Mayo researchers have discovered that viruses with certain mutations that render a component of the drug cocktail used to treat ineffective also have an impaired ability to kill CD4 T cells. Even though mutated viruses replicate as well as normal HIV, they fail to cause the infected cells to die. Not all mutant viruses share this effect; only selected mutations cause the impairment in cell killing, without effecting .

HIV has evolved many ways to cause the death of CD4 T cells, most of which involve HIV accelerating the normal . One kind of cell death that is unique to HIV involves the HIV enzyme protease, whose normal job is to cut up viral proteins so they can be used. This same process also cuts a normal cell protein which creates a novel protein called Casp8p41. This protein is only created during HIV infection. Casp8p41 in turn is responsible for the death of many of the infected cells. Researchers found that cells infected with HIV that also contain the mutations, produced less Casp8p41, and therefore fewer of the infected cells died.

The current treatment for HIV involves measuring virus levels in the blood and using drugs to stop that virus from reproducing. When drugs stop working, virus levels in the blood rise and physicians typically respond by changing medications. However, effective drugs may not always be available.

"Results from the current study suggest that if a patient is failing their current treatment, and other effective drugs are not available, then it may be best to take advantage of the virus' lessened ability to kill CD4 T cells, by staying on the same medication" says Dr. Badley. "We have begun to study whether the best approach might be instead to monitor Casp8p41 levels as opposed to measuring virus levels, and use that to determine whether or not to change treatment."

Researchers have already developed a way to measure Casp8p41 in the blood of patients, and this new knowledge may ultimately lead to a new diagnostic tool for HIV treatment, based upon predicting whether a patient's virus will deplete .

Related Stories

Recommended for you

HIV-1 genetic diversity is higher in vaginal tract than in blood during early infection

January 18, 2018
A first-of-its-kind study has found that the genetic diversity of human immunodeficiency virus type 1 (HIV-1) is higher in the vaginal tract than in the blood stream during early infection. This finding, published in PLOS ...

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

baudrunner
not rated yet Nov 30, 2010
It was discovered, at least written about, in 1997 that a minority of HIV patients had an immunity to host cell invasion by the virus because of the lack of CCR5 receptor sites which are required, along with CD4 receptors, for the invasion of the host cell to take place. That left it up to the immune system to eradicate the virus, which it can do effectively. In the other class of patients, antigens cannot reach the virus, which is free to replicate inside the host cell. A few years ago, Pfizer developed a CCR5 receptor blocker to facilitate treatment of HIV patients with full-blown AIDS. I don't know what happened to that study.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.