Archived Guthrie cards find a new purpose

August 22, 2012
A newborn's blood is spotted onto a Guthrie card. Commonly used to collect blood spots from the pricked heel of newborns to screen for diseases such as phenylketonuria, cystic fibrosis, and sickle cells disorders, Guthrie cards might offer a snapshot of the epigenome before disease develops. Credit: The New York State Department of Health Newborn Screening Program

Over the last 50 years, the spotting of newborn's blood onto filter paper for disease screening, called Guthrie cards, has become so routine that since 2000, more than 90% of newborns in the United States have had Guthrie cards created. In a study published online in Genome Research, researchers have shown that epigenetic information stored on archived Guthrie cards provides a retrospective view of the epigenome at birth, a powerful new application for the card that could help understand disease and predict future health.

DNA methylation, an epigenetic chemical modification of DNA, is known to affect and play a role in normal development, aging, and also in diseases such as heart disease, diabetes, and cancer. "But are these epigenetic marks involved in causing the disease, or a result of the disease itself?" asked Dr. Vardhman Rakyan of Queen Mary, University of London and co-senior author of the study. Rakyan explained that this is impossible to know when samples are obtained after onset of the disease. Guthrie cards, commonly used to collect blood spots from the pricked heel of newborns to screen for diseases such as phenylketonuria, , and sickle cells disorders, might offer a snapshot of the epigenome before disease develops. Many Guthrie cards are stored indefinitely by around the world, posing a potential wealth of information about the epigenome at birth.

Rakyan and an international group of colleagues purified genomic DNA and analyzed DNA methylomes from Guthrie cards and verified that this archived DNA yields high-quality methylation data when compared to fresh samples. The researchers then compared the profiles of newborns to the same healthy individuals at the age of three, looking for epigenetic variations detected in the Guthrie card sample that are stable into the early years of life.

"We found similar epigenetic differences between different people both at birth and when they were three years old," said Rakyan, who added that these differences, already present at birth, are unlikely due solely to inherent genetic differences between the individuals, but also due to environment or random events in utero. Furthermore, Guthrie card samples could be analyzed for both genetic and epigenetic differences together to view a more complete picture of the genome at birth.

Guthrie card methylomics is a potentially powerful new application for archived , which could provide a wealth of information about epigenetics and disease, and could give clues about health later in life. Dr. David Leslie, co-senior author of the study, added that because national health authorities routinely make Guthrie cards available, and with the proper consent obtained from parents and children, "we are talking about an invaluable, and non-renewable, resource for millions of individuals."

Explore further: Differences between human twins at birth highlight importance of intrauterine environment

More information: Beyan H, Down TA, Ramagopalan SV, Uvebrant K, Nilsson A, Holland ML, Gemma C, Giovannoni G, Boehm BO, Ebers GC, Lernmark Å, Cilio CM, Leslie RD, Rakyan VK. Guthrie card methylomics identifies temporally stable epialleles that are present at birth in humans. Genome Res doi: 10.1101/gr.134304.111

Related Stories

Differences between human twins at birth highlight importance of intrauterine environment

July 15, 2012
Your genes determine much about you, but environment can have a strong influence on your genes even before birth, with consequences that can last a lifetime. In a study published online in Genome Research, researchers have ...

Twin study reveals epigenetic alterations of psychiatric disorders

September 21, 2011
In the first study to systematically investigate genome-wide epigenetic differences in a large number of psychosis discordant twin-pairs, research at the Institute of Psychiatry (IoP) at King's College London provides further ...

Epigenetic changes in blood samples may point to schizophrenia

March 27, 2012
In a new study, researchers at the Swedish medical university Karolinska Institutet have identified epigenetic changes – known as DNA methylation – in the blood of patients with schizophrenia. The researchers were ...

Researchers complete the first epigenome in Europe

May 30, 2012
A study led by Manel Esteller, director of the Epigenetics and Cancer Biology Program at the Bellvitge Biomedical Research Institute (IDIBELL), professor of genetics at the University of Barcelona and ICREA researcher, has ...

Researchers characterize epigenetic fingerprint of 1,628 people

June 2, 2011
Until a decade, it was believed that differences between people were due solely to the existence of genetic changes, which are alterations in the sequence of our genes. The discoveries made during these last ten years show ...

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.