New study represents major breakthrough in macular degeneration

August 6, 2012

University of Kentucky researchers, led by Dr. Jayakrishna Ambati, have made an exciting finding in the "dry" form of age-related macular degeneration known as geographic atrophy (GA). GA is an untreatable condition that causes blindness in millions of individuals due to death of retinal pigmented epithelial cells.

The paper, "ERK1/2 Activation is a in Age-Related Macular Degeneration" appears in the current online issue of the premier journal .

Ambati, professor of physiology, and professor and vice chair of ophthalmology and visual sciences at UK, is a leader in the field of macular degeneration research. Previous research from the Ambati laboratory published in the journal Nature showed that in human eyes with geographic atrophy there is a deficiency of the enzyme DICER1, leading to accumulation of toxic Alu in the retinal pigmented epithelium. Another paper published in the journal Cell showed that when these RNAs build up in the eye they trigger activation of an immune complex known as the NLRP3 inflammasome. In turn, this leads to the production of a molecule known as IL-18, which causes death of retinal pigmented and vision loss by activating a known as MyD88. Importantly, Ambati and colleagues found evidence that activity of the inflammasome, IL-18, and MyD88 were all increased in human eyes with GA. They then showed that blocking any of these components could prevent retinal degeneration in multiple . The researchers are excited that blocking these pathways could herald a new potential therapy for GA, for which there is no approved treatment.

In the current paper, the authors show that Alu RNA, which increases following DICER1 deficit, activates a family of enzymes known as extracellular-signal-regulated kinases (ERK) 1/2. ERK 1/2, which are also known as classical mitogen-activated protein kinases (MAPKs), were found to be increased in the RPE of human eyes with GA and shown to be key mediators of RPE cell death. This work further defines the mechanisms of cell death in human GA and identifies a new therapeutic target for the dry form of AMD.

Explore further: Research represents major breakthrough in macular degeneration

Related Stories

Research represents major breakthrough in macular degeneration

April 26, 2012
University of Kentucky researchers, led by Dr. Jayakrishna Ambati, have made a major breakthrough in the "dry" form of age-related macular degeneration known as geographic atrophy (GA). GA is an untreatable condition that ...

Emerging pharmaceutical platform may pose risks to retinal health

October 11, 2011
According to new research by University of Kentucky investigators, an emerging pharmaceutical platform used in treating a variety of diseases may produce unintended and undesirable effects on eye function. The paper, "Short-interfering ...

Vision loss slowed by encapsulated cell therapy

April 7, 2011
(PhysOrg.com) -- A phase 2 clinical trial for the treatment of a severe form of age-related macular degeneration called geographic atrophy (GA) has become the first study to show the benefit of a therapy to slow the progression ...

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.