Study reveals new molecular target for melanoma treatment

August 17, 2012

A laboratory study led by UNC medical oncologist Stergios Moschos, MD, demonstrates how a new targeted drug, Elesclomol, blocks oxidative phosphorylation, which appears to play essential role in melanoma that has not been well-understood. Elesclomol (Synta Pharmaceuticals, Lexington, MA) was previously shown to have clinical benefit only in patients with normal serum lactate dehydrogenase (LDH), a laboratory test routinely used to assess activity of disease.

For more than 60 years, scientists have known that undergo glycolysis, or metabolize glucose, at a much higher rate than normal cells. The observation, called the Warburg effect, demonstrated that the normal energy producing processes in the cell are disrupted in cancer cells, preventing them from using metabolic pathways in the cell's mitochondria (often called the cell's "power plants").

Recently, however, increasing evidence suggests that, in addition to glycolysis, other metabolic pathways may also play a role in cancer, with important therapeutic implications. A promising strategy for targeting cancer cells, while sparing normal cells, is to target these altered with drug therapies. Elesclomol has been shown to trigger cell death in metastatic melanoma cells, primarily by suppressing – the process that cells use to transform nutrients into energy.

Moschos and his team demonstrated in the lab that metastatic melanoma cells exhibit a higher rate of glycolysis compared to their normal counterpart cells, termed melanocytes, which would be expected due to the Warburg effect.

"But we also found, surprisingly, that these cells have higher rates of oxidative phosphorylation – they are producing energy through more than one pathway, which explains a lot about how the drug works," says Dr. Moschos.

He notes that this drug has an interesting history. In a 600-patient phase III clinical trial conducted almost 4 years ago, Elesclomol had in the subgroup of patients with normal serum LDH. However, the FDA discontinued the trial, because the Elesclomol in combination with another chemotherapeutic drug may have negative effects in patients with high serum LDH, which is associated with poorer patient outcomes in metastatic melanoma. At the time, very little was known about Elesclomol's mechanism of action – blocking oxidative phosphorylation.

"Our inability to show how Elesclomol worked through measurement of biomarkers was the major driver to conduct this ," said Moschos, whose team took the clinical trial results back to the lab to try to figure out why the drug worked.

"Our results suggest that targeting oxidative phosphorylation in melanoma is a promising strategy for early metastatic disease, before melanoma cells switch their primary metabolic source to glycolysis, as Otto Warburg showed 60 years ago" said Dr. Moschos.

"Second, we were able to demonstrate a mechanism of resistance to Elesclomol, where long-term exposure to the drug leads to the selection of with high levels of glycolysis. This suggests that a two-pronged strategy aimed at blocking both may be called for."

The results of the study were published today in the journal Public Library of Science One.

Explore further: Metabolic state of brain cancer stem cells significantly different than the cancer cells they create

Related Stories

Metabolic state of brain cancer stem cells significantly different than the cancer cells they create

September 6, 2011
The metabolic state of glioma stem cells, which give rise to deadly glioblastomas, is significantly different from that of the brain cancer cells to which they give birth, a factor which helps those stem cells avoid treatment ...

New 'Achilles' heel' in breast cancer: tumor cell mitochondria

December 1, 2011
Researchers at the Kimmel Cancer Center at Jefferson have identified cancer cell mitochondria as the unsuspecting powerhouse and "Achilles' heel" of tumor growth, opening up the door for new therapeutic targets in breast ...

Gene inactivation drives spread of melanoma: study

June 11, 2012
Why do some cancers spread rapidly to other organs and others don't metastasize? A team of UNC researchers led by Norman Sharpless, MD, have identified a key genetic switch that determines whether melanoma, a lethal skin ...

New drug shrinks brain tumours in melanoma patients

May 21, 2012
(Medical Xpress) -- Australian researchers have reported promising results with a new drug that shrinks brain tumours in melanoma patients. Their findings are published in The Lancet medical journal today.

New drug, Vemurafenib, doubles survival of metastatic melanoma patients

March 1, 2012
A report published this week in the New England Journal of Medicine shows that the 50 percent of metastatic melanoma patients with a specific genetic mutation benefit from the drug Vemurafenib – increasing median survival ...

Recommended for you

Drug suppresses spread of breast cancer caused by stem-like cells

December 12, 2017
Rare stem-like tumor cells play a critical role in the spread of breast cancer, but a vulnerability in the pathway that powers them offers a strategy to target these cells using existing drugs before metastatic disease occurs, ...

MRI scans predict patients' ability to fight the spread of cancer

December 12, 2017
A simple, non-invasive procedure that can indicate how long patients with cancer that has spread to the brain might survive and whether they are likely to respond to immunotherapy has been developed by researchers in Liverpool.

A new weapon against bone metastasis? Team develops antibody to fight cancer

December 11, 2017
In the ongoing battle between cancer and modern medicine, some therapeutic agents, while effective, can bring undesirable or even dangerous side effects. "Chemo saves lives and improves survival, but it could work much better ...

Insights on how SHARPIN promotes cancer progression

December 11, 2017
Researchers at Sanford Burnham Prebys Medical Discovery (SBP) and the Technion in Israel have found a new role for the SHARPIN protein. In addition to being one of three proteins in the linear ubiquitin chain assembly complex ...

Glioblastoma survival mechanism reveals new therapeutic target

December 11, 2017
A Northwestern Medicine study, published in the journal Cancer Cell, has provided new insights into a mechanism of tumor survival in glioblastoma and demonstrated that inhibiting the process could enhance the effects of radiation ...

Liver cancer: Lipid synthesis promotes tumor formation

December 11, 2017
Lipids comprise an optimal energy source and an important cell component. Researchers from the Biozentrum of the University of Basel and from the University of Geneva have now discovered that the protein mTOR stimulates the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.