U of T and SickKids first to grow lung cells using stem cell technology

August 29, 2012 by Caitlin Mcnamee-lamb
Dr. Janet Rossant, a professor in the Departments of Molecular Genetics and Obstetrics and Gynaecology. Photo courtesy of SickKids

Researchers at the University of Toronto and the Hospital for Sick Children (SickKids) are paving the way towards individualized medicine for patients with cystic fibrosis. 

It is the first study to successfully use stem cells to produce mature lung cells that could potentially be used to study and test drugs.

"This study shows the major impact can have on the field of individualized medicine," says Dr. Janet Rossant, a professor in the Departments of Molecular Genetics and Obstetrics and Gynaecology, principal investigator of the study and chief of research at SickKids. "It is a promising move toward targeted therapy for patients with cystic fibrosis."

Researchers were able to induce human to become mature lung cells, which contained the . The gene, discovered at SickKids in 1989, is responsible for cystic fibrosis when mutated.

To create the lung cells, researchers used an induced ( genetically induced to function like embryonic stem cells) derived from the skin of patients with cystic fibrosis. They prompted these stem cells to become lung cells, which contain mutations specific to the patients involved.

Once researchers found that they could create lung cells derived from individual patients they then used a compound that resembles an investigational drug that is currently being tested for cystic fibrosis to see if it would rescue the CFTR gene mutation.

If the lung cells of a particular patient can be generated then tests could also be done to evaluate the effectiveness of specific drugs on individual patient's cells, says Rossant.

If the drug is effective in vitro, then the next step would be to see if it works on the patient.

Prior to this year, the only therapies available for patients with cystic fibrosis have targeted the symptoms (like infection and digestive disorders) rather than the CFTR .

"More recently there has been a paradigm shift and now drugs are being developed to target the mutant CFTR specifically," says Christine Bear, a co-investigator of the study, co-director of the SickKids Cystic Fibrosis Centre and senior scientist in Molecular Structure and Function at SickKids.

"However, every patient is unique, so one drug isn't necessarily going to work on all patients with the same disease," says Bear. "Take cancer as an example, each individual responds differently to each treatment. For some, a certain drug works, and for others it doesn't. This tells us that we need to be prepared to find the best option for that individual patient."

In this particular study, the compound used did not work in all of the derived cell lines. This finding further emphasizes the need for individualized medicine, says Bear.

Researchers say the next step is to perfect the method of generating epithelial , so that the process is more efficient and can be used to investigate other genetic diseases.

Explore further: Unraveling a new regulator of cystic fibrosis

More information: The study is published in the August 26 advance online edition of Nature Biotechnology.

Related Stories

Unraveling a new regulator of cystic fibrosis

September 19, 2011
Cystic fibrosis (CF), a chronic disease that clogs the lungs and leads to life-threatening lung infections, is caused by a genetic defect in a chloride channel called cystic fibrosis transmembrane conductase regulator (CFTR). ...

An 'unconventional' path to correcting cystic fibrosis

September 1, 2011
Researchers have identified an unconventional path that may correct the defect underlying cystic fibrosis, according to a report in the September 2nd issue of the journal Cell. This new treatment dramatically extends the ...

Severity of cystic fibrosis may be determined by presence of newly-identified modifier genes

May 25, 2011
(Medical Xpress) -- In an age where personalized medicine is within reach, a one-size-fits-all approach just won’t cut it. A group of North American researchers have identified two “modifier” genes in the genomes ...

Recommended for you

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.