U of T and SickKids first to grow lung cells using stem cell technology

August 29, 2012 by Caitlin Mcnamee-lamb, University of Toronto
Dr. Janet Rossant, a professor in the Departments of Molecular Genetics and Obstetrics and Gynaecology. Photo courtesy of SickKids

Researchers at the University of Toronto and the Hospital for Sick Children (SickKids) are paving the way towards individualized medicine for patients with cystic fibrosis. 

It is the first study to successfully use stem cells to produce mature lung cells that could potentially be used to study and test drugs.

"This study shows the major impact can have on the field of individualized medicine," says Dr. Janet Rossant, a professor in the Departments of Molecular Genetics and Obstetrics and Gynaecology, principal investigator of the study and chief of research at SickKids. "It is a promising move toward targeted therapy for patients with cystic fibrosis."

Researchers were able to induce human to become mature lung cells, which contained the . The gene, discovered at SickKids in 1989, is responsible for cystic fibrosis when mutated.

To create the lung cells, researchers used an induced ( genetically induced to function like embryonic stem cells) derived from the skin of patients with cystic fibrosis. They prompted these stem cells to become lung cells, which contain mutations specific to the patients involved.

Once researchers found that they could create lung cells derived from individual patients they then used a compound that resembles an investigational drug that is currently being tested for cystic fibrosis to see if it would rescue the CFTR gene mutation.

If the lung cells of a particular patient can be generated then tests could also be done to evaluate the effectiveness of specific drugs on individual patient's cells, says Rossant.

If the drug is effective in vitro, then the next step would be to see if it works on the patient.

Prior to this year, the only therapies available for patients with cystic fibrosis have targeted the symptoms (like infection and digestive disorders) rather than the CFTR .

"More recently there has been a paradigm shift and now drugs are being developed to target the mutant CFTR specifically," says Christine Bear, a co-investigator of the study, co-director of the SickKids Cystic Fibrosis Centre and senior scientist in Molecular Structure and Function at SickKids.

"However, every patient is unique, so one drug isn't necessarily going to work on all patients with the same disease," says Bear. "Take cancer as an example, each individual responds differently to each treatment. For some, a certain drug works, and for others it doesn't. This tells us that we need to be prepared to find the best option for that individual patient."

In this particular study, the compound used did not work in all of the derived cell lines. This finding further emphasizes the need for individualized medicine, says Bear.

Researchers say the next step is to perfect the method of generating epithelial , so that the process is more efficient and can be used to investigate other genetic diseases.

Explore further: Unraveling a new regulator of cystic fibrosis

More information: The study is published in the August 26 advance online edition of Nature Biotechnology.

Related Stories

Unraveling a new regulator of cystic fibrosis

September 19, 2011
Cystic fibrosis (CF), a chronic disease that clogs the lungs and leads to life-threatening lung infections, is caused by a genetic defect in a chloride channel called cystic fibrosis transmembrane conductase regulator (CFTR). ...

An 'unconventional' path to correcting cystic fibrosis

September 1, 2011
Researchers have identified an unconventional path that may correct the defect underlying cystic fibrosis, according to a report in the September 2nd issue of the journal Cell. This new treatment dramatically extends the ...

Severity of cystic fibrosis may be determined by presence of newly-identified modifier genes

May 25, 2011
(Medical Xpress) -- In an age where personalized medicine is within reach, a one-size-fits-all approach just won’t cut it. A group of North American researchers have identified two “modifier” genes in the genomes ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.