New technology delivers sustained release of drugs for up to six months

August 13, 2012

A new technology which delivers sustained release of therapeutics for up to six months could be used in conditions which require routine injections, including diabetes, certain forms of cancer and potentially HIV/AIDS.

Researchers from the University of Cambridge have developed injectable, reformable and spreadable hydrogels which can be loaded with proteins or other therapeutics. The hydrogels contain up to 99.7% water by weight, with the remainder primarily made up of cellulose polymers held together with cucurbiturils - barrel-shaped molecules which act as miniature 'handcuffs'.

"The hydrogels protect the proteins so that they remain bio-active for long periods, and allow the proteins to remain in their native state," says Dr Oren Scherman of the Department of Chemistry, who led the research. "Importantly, all the components can be incorporated at room temperature, which is key when dealing with proteins which denature when exposed to high heat."

The hydrogels developed by Scherman, Dr Xian Jun Loh and PhD student Eric Appel are capable of delivering sustained release of the proteins they contain for up to six months, compared with the current maximum of three months. The rate of release can be controlled according to the ratio of materials in the hydrogel.

Not only do these hydrogels double the window of content release, they use far less non-water material than current technology. The extra material serves as a type of scaffolding holding the hydrogel together, but it can affect performance of the cargo contained within it, so the less structure-forming material contained within the hydrogel, the more effectively it will perform.

As drug therapy moves away from small toward protein-based therapy, applications such hormone therapy, and would all be ideal applications for the hydrogels.

For example, more than a quarter of the 2.9 million individuals in the UK who have diabetes have to inject themselves daily with insulin in order to control blood glucose levels. Containing the insulin within a could potentially reduce the number of annual injections from 365 to just two.

The long-term sustained release would be especially useful in resource-deprived or rural settings where patients requiring daily medication may not have regular access to a doctor. "There's been a lot of research that shows patients who need to take a pill each day for the rest of their lives, especially HIV patients in Africa who do not show any obvious symptoms, will take the pills for a maximum of six months before they stop, negating the point of taking the medication in the first place," says Appel. "If patients only have to take one shot which will give them six month's worth of medication, we'll have a much greater chance of affecting an entire population and slowing or stopping the progression of a disease."

The team are currently working with researchers from the Brain Repair Centre in the Department of Clinical Medicine on how the technology might be used as a possible treatment for brain cancer.

The research was published recently in the journal Biomaterials and has been patented by Cambridge Enterprise, the University's commercialisation group.

Explore further: Scientists merge spider silk, human muscle to design a novel, self-assembling peptide

Related Stories

Scientists merge spider silk, human muscle to design a novel, self-assembling peptide

December 2, 2011
(Medical Xpress) -- Because of its high water content and polymer network, peptide hydrogel is a promising material for protein storage and transfer without significant loss of their biological activity. These hydrogels have ...

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.