Common RNA pathway found in ALS and dementia

September 30, 2012

Two proteins previously found to contribute to ALS, also known as Lou Gehrig's disease, have divergent roles. But a new study, led by researchers at the Department of Cellular and Molecular Medicine at the University of California, San Diego School of Medicine, shows that a common pathway links them.

The discovery reveals a small set of that could be used to measure the health of , and provides a useful tool for development of new pharmaceuticals to treat the devastating disorder, which currently has no treatment or cure.

Funded in part by the National Institutes of Health and the California Institute for Regenerative Medicine (CIRM), the study will be published in the advance online edition of on September 30.

ALS is an adult-onset neurodegenerative disorder characterized by premature degeneration of motor neurons, resulting in a progressive, fatal paralysis in patients.

The two proteins that contribute to the disease – FUS/TLS and TDP-43 – bind to (RNA), intermediate molecules that translate from DNA to proteins. In normal cells, both TDP-43 and FUS/TLS are found in the nucleus where they help maintain proper levels of RNA. In the majority of ALS patients, however, these proteins instead accumulate in the cell's cytoplasm – the liquid that separates the nucleus from the , and thus are excluded from the nucleus, which prevents them from performing their normal duties.

Since the proteins are in the wrong location in the cell, they are unable to perform their normal function, according to the study's lead authors, Kasey R. Hutt, Clotilde Lagier-Tourenne and Magdalini Polymenidou. "In diseased motor neurons where TDP-43 is cleared from the nucleus and forms cytoplasmic aggregates," the authors wrote, "we saw lower of three genes regulated by TDP-43 and FUS/TLS. We predicted that this, based on our mouse studies, and found the same results in neurons derived from human embryonic stem cells."

In 2011, this team of UC San Diego scientists discovered that more than one-third of the genes in the brains of mice are direct targets of TDP-43, affecting the functions of these genes. In the new study, they compared the impact of the FUS/TLS to that of TDP-43, hoping to find a large target overlap.

"Surprisingly, instead we saw a relatively small overlap, and the common RNA targets genes contained exceptionally long introns, or non-coding segments. The set is comprised of genes that are important for synapse function," said principal investigator Gene Yeo, PhD, assistant professor in the Department of Cellular and and the Institute for Genomic Medicine at UC San Diego and a visiting professor at the Molecular Engineering Laboratory in Singapore. "Loss of this common overlapping set of genes is evidence of a common pathway that appears to contribute to motor neuron degeneration."

In an effort to understand the normal function of these two RNA binding proteins, the scientists knocked down the proteins in brains of mice to mimic nuclear clearance, using antisense oligonucleotide technology developed in collaboration with ISIS Pharmaceuticals. The study resulted in a list of genes that are up or down regulated, and the researchers duplicated the findings in human cells.

"If we can somehow rescue the from down regulation, or being decreased by these proteins, it could point to a drug target for ALS to slow or halt degeneration of the motor neurons," said Yeo.

These proteins also look to be a central component in other neurodegenerative conditions. For example, accumulating abnormal TDP-43 and FUS/TLS in neuronal has been documented in frontotemporal lobar dementia, a neurological disorder that has been shown to be genetically and clinically linked to ALS, and which is the second most frequent cause of dementia after Alzheimer's disease.

Explore further: Two genes that cause familial ALS shown to work together

Related Stories

Two genes that cause familial ALS shown to work together

September 1, 2011
Although several genes have been linked to amyotrophic lateral sclerosis (ALS), it is still unknown how they cause this progressive neurodegenerative disease. In a new study, Columbia University Medical Center (CUMC) researchers ...

Studies of mutated protein in Lou Gehrig's disease reveal new paths for drug discovery

April 26, 2011
Several genes have been linked to ALS, with one of the most recent called FUS. Two new studies in PLoS Biology, one from the University of Pennsylvania School of Medicine, and the other from colleagues at Brandeis University, ...

Disease progression halted in rat model of Lou Gehrig's disease

December 12, 2011
Amyotrophic lateral sclerosis (ALS; also known as Lou Gehrig's disease) is an incurable adult neurodegenerative disorder that progresses to paralysis and death. Genetic mutations are the cause of disease in 5% of patients ...

Genetic screening in yeast reveals new candidate gene for Lou Gehrig's disease

November 15, 2011
(Medical Xpress) -- Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, is a universally fatal neurodegenerative disease. Mutations in two related proteins, TDP-43 and FUS, cause some forms of ALS. Specifically, ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.