Deadly complication of stem cell transplants reduced in mice

September 27, 2012 by Julia Evangelou Strait

(Medical Xpress)—Studying leukemia in mice, researchers at Washington University School of Medicine in St. Louis have reduced a life-threatening complication of stem cell transplants, the only curative treatment when leukemia returns.

About 50 percent of leukemia patients who receive from another person develop graft-versus-host disease, a condition where donor immune cells attack the patient's own body. The main organs affected are the skin, liver and gut. Now, the scientists have shown they can redirect donor immune cells away from these . Steering away from healthy tissue also leaves more of them available for their intended purpose – killing .

"This is the first example of reducing graft-versus-host disease not by killing the T- cells, but simply by altering how they circulate and traffic," says John F. DiPersio, MD, PhD, the Virginia E. and Sam J. Golman Professor of Medicine. "Donor T-cells do good things in terms of eliminating the recipient's leukemia, but they can also attack normal tissues leading to death in a number of patients. The goal is to minimize graft-versus-host disease, while maintaining the therapeutic graft-versus-leukemia effect."

The study is now available online in Blood.

Working with mice, Jaebok Choi, PhD, research assistant professor of medicine, showed that eliminating or blocking a particular protein – the interferon gamma receptor – on donor T-cells makes them unable to migrate to critical organs such as the intestines but still leaves them completely capable of killing .

"The fact that blocking the interferon gamma receptor can redirect donor T-cells away from the , at least in mice, is very exciting because graft-versus-host disease in the gut results in most of the deaths after ," DiPersio says. "People can tolerate graft-versus-host disease of the skin. But in the GI tract, it causes relentless diarrhea and severe infections due to gut bacteria leaking into the blood, which can result in severe toxicity, reduction in the quality of life or even death in some patients."

Long known to be involved in inflammation, the roles of interferon gamma, its receptor and their downstream signaling molecules are just beginning to be described in the context of graft-versus-host disease, says DiPersio, who treats patients at Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine.

The cascade begins when interferon gamma activates its receptor. The interferon gamma receptor then activates molecules known as JAK kinases, followed by STAT, and finally CXCR3. CXCR3 mediates the trafficking of donor T-cells to the GI tract and other target organs.

Since deleting the interferon gamma receptor from donor T-cells directs them away from target organs, the researchers asked whether they could produce the same beneficial effects by inhibiting some of the receptor's downstream signaling molecules. Indeed, Choi also found that knocking out CXCR3 reduces graft-versus- host disease, but not completely.

"There are probably additional downstream targets of interferon gamma receptor signaling other than JAKs, STATs and CXCR3 that are responsible for T-cell trafficking to the GI tract and other target organs," DiPersio says. "We're trying to figure out what those are."

To move their findings closer to possible use in humans, Choi and DiPersio also showed that they could mimic the protective effect of deleting the receptor with existing drugs that block JAK kinases. In this case, they tested two JAK inhibitors, one of which is currently approved by the U.S. Food and Drug Administration to treat myelofibrosis, a pre-leukemic condition in which the bone marrow is replaced with fibrous tissue.

While they showed that JAK inhibitors are effective in redirecting donor T-cells away from target organs and reducing in mice with leukemia, they have not yet tested whether these drugs also preserve the desired anti-leukemia effect.

"The proof-of-principle behind these experiments is the exciting part," DiPersio says. "If you can change where the T-cells go as opposed to killing them, you prevent the life-threatening complications and maintain the clinical benefit of the transplant."

Explore further: New discovery may lead to effective prevention and treatment of graft-versus-host disease

More information: Choi J, Ziga ED, Ritchey J, Collins L, Prior JL, Cooper ML, Piwnica-Worms D, DiPersio JF. INF gamma receptor signaling mediates alloreactive T cell trafficking and GvHD. Blood. Online Sept. 12, 2012.

Related Stories

New discovery may lead to effective prevention and treatment of graft-versus-host disease

April 1, 2012
A new discovery in mice may lead to new treatments that could make bone marrow transplants more likely to succeed and to be significantly less dangerous. According to new research findings published in the Journal of Leukocyte ...

Mini-molecule governs severity of acute graft vs. host disease, study finds

March 12, 2012
Researchers have identified a molecule that helps control the severity of graft-versus-host disease, a life-threatening complication for many leukemia patients who receive a bone-marrow transplant.

HIV drug reduces graft-vs.-host disease in bone marrow transplant patients

July 11, 2012
An HIV drug that redirects immune cell traffic significantly reduces the incidence of a dangerous complication that often follows bone marrow transplants for blood cancer patients, according to research from the Perelman ...

Biomarker detects graft-versus-host-disease in cancer patients after bone marrow transplant

October 21, 2011
A University of Michigan Health System-led team of researchers has found a biomarker they believe can help rapidly identify one of the most serious complications in patients with leukemia, lymphoma and other blood disorders ...

Bone marrow and blood stem cell transplant survival rates equal, when donor is unrelated to patient

December 12, 2011
Patients who receive a blood stem cell transplant from a donor outside of their family to treat leukemia and other blood diseases are more likely to have graft failure but less likely to experience graft-versus-host disease, ...

Recommended for you

Mouse model of human immune system inadequate for stem cell studies

August 22, 2017
A type of mouse widely used to assess how the human immune system responds to transplanted stem cells does not reflect what is likely to occur in patients, according to a study by researchers at the Stanford University School ...

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.