HIF gene mutation found in tumor cells offers new clues about cancer metabolism

September 6, 2012

For the first time, a mutation in HIF2α, a specific group of genes known as transcription factors that is involved in red blood cell production and cell metabolism, has been identified in cancer tumor cells.

Researchers from Huntsman Cancer Institute (HCI) at the University of Utah and the National Institutes of Health found the mutation in of two patients with the paraganglioma/pheochromocytoma and somatostatinoma. The mutation was previously identified in connection with a non-cancerous hereditary condition, but never before in spontaneously arising cancers. The research results appear in the September 6, 2012 issue of the .

Transcription factors are proteins that bind to specific sequences of DNA to regulate cell functions. Hypoxia-inducible factors (HIFs) are transcription factors that control a wide range of functions connected to the way cells respond to oxygen, including metabolism (the way energy is produced) and the creation of red blood cells. Increased amounts of HIF in cancer cells was found to be responsible for the unique way they generate energy, referred to as the Warburg effect, named for Otto Warburg, a German physiologist who received the 1931 Nobel Prize in Physiology for this research.

"These HIF pathway mutations were first discovered while studying people with a condition called polycythemia that makes the body overproduce ," said one of the senior authors, Josef Prchal, M.D., professor in the Division of Hematology and at the University of Utah School of Medicine, an HCI investigator, and an expert on polycythemic disorders who has previously discovered other mutations in other HIF pathway genes.

The findings raise some important questions for future research. "The patients in which we found these mutations have a rare combination of diseases, paraganglioma/pheochromocytoma and polycythemia, yet they shared similar mutations," said Prchal. "Learning whether HIF pathway mutations are present in other cancers could increase understanding of the mechanisms of cancer and offer a possible new target for cancer treatment development."

Explore further: Understanding cancer energetics

Related Stories

Understanding cancer energetics

June 4, 2011
(Medical Xpress) -- It's long been known that cancer cells eat a lot of sugar to stay alive. In fact, where normal, noncancerous cells generate energy from using some sugar and a lot of oxygen, cancerous cells use virtually ...

Researchers link cell division and oxygen levels

June 11, 2011
Cells grow abundant when oxygen is available, and generally stop when it is scarce. Although this seems straightforward, no direct link ever has been established between the cellular machinery that senses oxygen and that ...

Recommended for you

Zebrafish larvae could be used as 'avatars' to optimize personalized treatment of cancer

August 21, 2017
Portuguese scientists have for the first time shown that the larvae of a tiny fish could one day become the preferred model for predicting, in advance, the response of human malignant tumors to the various therapeutic drugs ...

Scientists discover vitamin C regulates stem cell function, curbs leukemia development

August 21, 2017
Not much is known about stem cell metabolism, but a new study from the Children's Medical Center Research Institute at UT Southwestern (CRI) has found that stem cells take up unusually high levels of vitamin C, which then ...

Searching for the 'signature' causes of BRCAness in breast cancer

August 21, 2017
Breast cancer cells with defects in the DNA damage repair-genes BRCA1 and BRCA2 have a mutational signature (a pattern of base swaps—e.g., Ts for Gs, Cs for As—throughout a genome) known in cancer genomics as "Signature ...

How a non-coding RNA encourages cancer growth and metastasis

August 21, 2017
A mechanism that pushes a certain gene to produce a non-coding form of RNA instead of its protein-coding alternative can promote the growth of cancer, report researchers at the Medical University of South Carolina (MUSC) ...

Spaser can detect, kill circulating tumor cells to prevent cancer metastases, study finds

August 21, 2017
A nanolaser known as the spaser can serve as a super-bright, water-soluble, biocompatible probe capable of finding metastasized cancer cells in the blood stream and then killing these cells, according to a new research study.

Comprehensive genomic analysis offers insights into causes of Wilms tumor development

August 21, 2017
A comprehensive genomic analysis of Wilms tumor - the most common kidney cancer in children - found genetic mutations involving a large number of genes that fall into two major categories. These categories involve cellular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.