HIF gene mutation found in tumor cells offers new clues about cancer metabolism

September 6, 2012

For the first time, a mutation in HIF2α, a specific group of genes known as transcription factors that is involved in red blood cell production and cell metabolism, has been identified in cancer tumor cells.

Researchers from Huntsman Cancer Institute (HCI) at the University of Utah and the National Institutes of Health found the mutation in of two patients with the paraganglioma/pheochromocytoma and somatostatinoma. The mutation was previously identified in connection with a non-cancerous hereditary condition, but never before in spontaneously arising cancers. The research results appear in the September 6, 2012 issue of the .

Transcription factors are proteins that bind to specific sequences of DNA to regulate cell functions. Hypoxia-inducible factors (HIFs) are transcription factors that control a wide range of functions connected to the way cells respond to oxygen, including metabolism (the way energy is produced) and the creation of red blood cells. Increased amounts of HIF in cancer cells was found to be responsible for the unique way they generate energy, referred to as the Warburg effect, named for Otto Warburg, a German physiologist who received the 1931 Nobel Prize in Physiology for this research.

"These HIF pathway mutations were first discovered while studying people with a condition called polycythemia that makes the body overproduce ," said one of the senior authors, Josef Prchal, M.D., professor in the Division of Hematology and at the University of Utah School of Medicine, an HCI investigator, and an expert on polycythemic disorders who has previously discovered other mutations in other HIF pathway genes.

The findings raise some important questions for future research. "The patients in which we found these mutations have a rare combination of diseases, paraganglioma/pheochromocytoma and polycythemia, yet they shared similar mutations," said Prchal. "Learning whether HIF pathway mutations are present in other cancers could increase understanding of the mechanisms of cancer and offer a possible new target for cancer treatment development."

Explore further: Understanding cancer energetics

Related Stories

Understanding cancer energetics

June 4, 2011
(Medical Xpress) -- It's long been known that cancer cells eat a lot of sugar to stay alive. In fact, where normal, noncancerous cells generate energy from using some sugar and a lot of oxygen, cancerous cells use virtually ...

Researchers link cell division and oxygen levels

June 11, 2011
Cells grow abundant when oxygen is available, and generally stop when it is scarce. Although this seems straightforward, no direct link ever has been established between the cellular machinery that senses oxygen and that ...

Recommended for you

What does hair loss have to teach us about cancer metastasis?

December 15, 2017
Understanding how cancer cells are able to metastasize—migrate from the primary tumor to distant sites in the body—and developing therapies to inhibit this process are the focus of many laboratories around the country. ...

Cancer immunotherapy may work better in patients with specific genes

December 15, 2017
Cancer cells arise when DNA is mutated, and these cells should be recognized as "foreign" by the immune system. However, cancer cells have found ways to evade detection by the immune system.

Scientists pinpoint gene to blame for poorer survival rate in early-onset breast cancer patients

December 15, 2017
A new study led by scientists at the University of Southampton has found that inherited variation in a particular gene may be to blame for the lower survival rate of patients diagnosed with early-onset breast cancer.

Scientists unlock structure of mTOR, a key cancer cell signaling protein

December 14, 2017
Researchers in the Sloan Kettering Institute have solved the structure of an important signaling molecule in cancer cells. They used a new technology called cryo-EM to visualize the structure in three dimensions. The detailed ...

'Bet hedging' explains the efficacy of many combination cancer therapies

December 14, 2017
The efficacy of many FDA-approved cancer drug combinations is not due to synergistic interactions between drugs, but rather to a form of "bet hedging," according to a new study published by Harvard Medical School researchers ...

Liquid biopsy results differed substantially between two providers

December 14, 2017
Two Johns Hopkins prostate cancer researchers found significant disparities when they submitted identical patient samples to two different commercial liquid biopsy providers. Liquid biopsy is a new and noninvasive alternative ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.