Researchers identify possible new oncogene and future therapy target

September 11, 2012
Immunohistochemical analysis of FAM83A expression in normal (top) and malignant (bottom) breast tissue specimens shows that whereas 0 of 16 normal cells were strongly positive for FAM83A staining, 45 of 48 malignant cells were positive. Credit: Bissell group, Berkeley Lab

A gene that may possibly belong to an entire new family of oncogenes has been linked by researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) to the resistance of breast cancer to a well-regarded and widely used cancer therapy.

One of the world's leading breast cancer researchers, Mina Bissell, Distinguished Scientist with Berkeley Lab's Life Sciences Division, led a study in which a protein known as FAM83A was linked to resistance to the cancer drugs known as EGFR-TKIs (Epidermal Growth Factor Receptor-). Not only may this discovery explain the clinical correlation between a high expression of FAM83A and a for breast , it may also provide a new target for future therapies.

"Resistance to EGFR-TKIs has limited their use for and until now the mechanisms behind this resistance have largely been a mystery," Bissell says. "We've demonstrated, both in and in mice, that FAM83A has oncogenic properties and when overexpressed in cancer cells confers EGFR-TKI resistance and promotes the proliferation and invasion of tumors."

Bissell is the corresponding author along with Saori Furuta, also with Berkeley Lab's Life Sciences Division, of a paper describing this research in the (JCI). The paper is titled "FAM83A confers EGFR-TKI resistance in and in mice." Other co-authors are Sun-Young Lee, Roland Meier, Marc Lenburg, Paraic Kenny and Ren Xu.

Therapeutic targeting of oncogenes can be an effective way to fight some cancers as evidenced in the successful use of EGFR-TKIs to fight lung cancer. However, EGFR-TKIs have not been effective for treating breast cancers. EGFR-TKIs work by blocking EGFR from adding a phosphate molecule to downstream signaling proteins, an action called phosphorylation that is a necessary step in the development of many types of cancer.

"We hypothesized that resistance to EGFR-TKIs originated, at least in part, from molecular alterations that activated phosphorylation signaling downstream of EGFRs," Furuta says.

Using a unique three-dimensional cell culture assay based on phenotypic reversion that was originally developed by Bissell and her research group, the co-authors of the JCI paper screened for genes involved in EGFR-TKI resistance in both normal and cancerous human breast cell lines. They found that, while normal human breast tissue doesn't produce FAM38A, the protein is highly expressed in cancerous tissue. This was true for every breast cancer cell line they examined, and was particularly pronounced in those cell lines that have been the most resistant to treatment with EGFR-TKIs. Further studies showed that FAM83A interacts with and causes phosphorylation of critical signaling proteins downstream of EGFRs, as the researchers hypothesized. This downstream phosphorylation would act to blunt or negate any therapeutic effects of EGFR-TKIs that took place further upstream.

The results of this research are consistent with clinical data showing that breast cancer patients with high levels of FAM83A have a significantly lower survival rate than patients with low levels of FAM83A. However, while Bissell, Furuta and their colleagues note that a number of questions about FAM83A and other members of the FAM83 protein family remain to be addressed, the importance of these proteins as potential drug targets for therapy seems clear.

"The beauty of this study is that it not only helps explain why some are resistant to EGFR-TKIs, but it also reveals a whole new family of potential oncogenes that could be a target for all types of cancer, including ," Bissell says.

Bissell says the results of this study also demonstrate the potential of using 3D phenotypic reversion assays as a new path to the discovery of more effective therapeutic drugs.

"Our 3D phenotypic reversion assay revealed the malignant phenotype, something that could not have been done with a 2D assay," she says. "This is the first time we have used our assay to discover a potential target for cancer drugs, but it shows that an assay like ours can be a powerful tool for finding new targets and therapies."

Explore further: New class of proteins allows breast cancer cells to evade tyrosine kinase inhibitors

Related Stories

New class of proteins allows breast cancer cells to evade tyrosine kinase inhibitors

August 13, 2012
Aberrant regulation of cell growth pathways is required for normal cells to become cancerous, and in many types of cancer, cell growth is driven by a group of enzymes known as receptor tyrosine kinases (RTKs). The RTK epidermal ...

The right combination: Overcoming drug resistance in cancer

June 1, 2012
Overactive epidermal growth factor receptor (EGFR) signaling has been linked to the development of cancer. Several drug therapies have been developed to treat these EGFR-associated cancers; however, many patients have developed ...

Double whammy: RNAi enhances lung cancer therapy

March 20, 2012
Non-small cell lung cancer (NSCLC), the most common form of lung cancer, is usually treated with surgery and chemotherapy. However, a small group of patients can also be helped by treatment with tyrosine kinase inhibitors ...

New study helps predict which lung cancer drugs are most likely to work

January 10, 2012
(Medical Xpress) -- Researchers at Johns Hopkins have shown that DNA changes in a gene that drives the growth of a form of lung cancer can make the cancer’s cells resistant to cancer drugs. The findings show that some ...

Recommended for you

Researchers develop test that can diagnose two cancer types

December 12, 2017
A blood test using infrared spectroscopy can be used to diagnose two types of cancer, lymphoma and melanoma, according to a study led by Georgia State University.

Atoh1, a potential Achilles' heel of Sonic Hedgehog medulloblastoma

December 12, 2017
Medulloblastoma is the most common type of solid brain tumor in children. Current treatments offer limited success and may leave patients with severe neurological side effects, including psychiatric disorders, growth retardation ...

Cancer-causing mutation suppresses immune system around tumours

December 12, 2017
Mutations in 'Ras' genes, which drive 25% of human cancers by causing tumour cells to grow, multiply and spread, can also protect cancer cells from the immune system, finds a new study from the Francis Crick Institute and ...

Drug suppresses spread of breast cancer caused by stem-like cells

December 12, 2017
Rare stem-like tumor cells play a critical role in the spread of breast cancer, but a vulnerability in the pathway that powers them offers a strategy to target these cells using existing drugs before metastatic disease occurs, ...

MRI scans predict patients' ability to fight the spread of cancer

December 12, 2017
A simple, non-invasive procedure that can indicate how long patients with cancer that has spread to the brain might survive and whether they are likely to respond to immunotherapy has been developed by researchers in Liverpool.

A new weapon against bone metastasis? Team develops antibody to fight cancer

December 11, 2017
In the ongoing battle between cancer and modern medicine, some therapeutic agents, while effective, can bring undesirable or even dangerous side effects. "Chemo saves lives and improves survival, but it could work much better ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.