Sleep problems may be early sign of Alzheimer's

September 5, 2012, Washington University School of Medicine

Sleep disruptions may be among the earliest indicators of Alzheimer's disease, scientists at Washington University School of Medicine in St. Louis report Sept. 5 in Science Translational Medicine.

Working in a , the researchers found that when the first signs of Alzheimer's plaques appear in the brain, the normal sleep-wake cycle is significantly disrupted.

"If sleep abnormalities begin this early in the course of human Alzheimer's disease, those changes could provide us with an easily detectable sign of pathology," says senior author David M. Holtzman, MD, the Andrew B. and Gretchen P. Jones Professor and head of Washington University's Department of Neurology. "As we start to treat Alzheimer's patients before the onset of , the presence or absence of sleep problems may be a rapid indicator of whether the new treatments are succeeding."

Holtzman's laboratory was among the first to link sleep problems and Alzheimer's through studies of sleep in mice genetically altered to develop Alzheimer's plaques as they age. In a study published in 2009, he showed that brain levels of a primary ingredient of the plaques naturally rise when healthy young mice are awake and drop after they go to sleep. Depriving the mice of sleep disrupted this cycle and accelerated the development of brain plaques.

A similar rising and falling of the component, a protein called amyloid beta, was later detected in the of healthy humans studied by co-author Randall Bateman, MD, the Charles F. and Joanne Knight Distinguished Professor of Neurology at Washington University.

The new research, led by Jee Hoon Roh, MD, PhD, a and postdoctoral fellow in Holtzman's laboratory, shows that when the first indicators of brain plaques appear, the natural fluctuations in amyloid stop in both mice and humans.

"We suspect that the plaques are pulling in amyloid beta, removing it from the processes that would normally clear it from the brain," Holtzman says.

Mice are nocturnal animals and normally sleep for 40 minutes during every hour of daylight, but when Alzheimer's plaques began forming in their brains, their average sleep times dropped to 30 minutes per hour.

To confirm that amyloid beta was directly linked to the changes in sleep, researchers gave a vaccine against amyloid beta to a new group of mice with the same genetic modifications. As these mice grew older, they did not develop . Their sleeping patterns remained normal and amyloid beta levels in the brain continued to rise and fall regularly.

Scientists now are evaluating whether sleep problems occur in patients who have markers of Alzheimer's disease, such as plaques in the brain, but have not yet developed memory or other cognitive problems.

"If these exist, we don't yet know exactly what form they take—reduced sleep overall or trouble staying asleep or something else entirely," Holtzman says. "But we're working to find out."

Explore further: Trouble sleeping? It may affect your memory later on

More information: Roh JH, Huang Y, Bero AW, Kastne T, Stewart FR, Bateman RJ, Holtzman DM. Disruption of the sleep-wake cycle and diurnal fluctuation of amyloid-β in mice with Alzheimer's disease pathology. Science Translational Medicine, Sept. 5, 2012.

Related Stories

Trouble sleeping? It may affect your memory later on

February 14, 2012
The amount and quality of sleep you get at night may affect your memory later in life, according to research that was released today and will be presented at the American Academy of Neurology's 64th Annual Meeting in New ...

Cells talk more in areas Alzheimer's hits first, boosting plaque component

May 2, 2011
(Medical Xpress) -- Higher levels of cell chatter boost amyloid beta in the brain regions that Alzheimer’s hits first, researchers at Washington University School of Medicine in St. Louis report. Amyloid beta is the ...

Marker for Alzheimer's disease rises during day and falls with sleep

September 26, 2011
A marker for Alzheimer's disease rises and falls in the spinal fluid in a daily pattern that echoes the sleep cycle, researchers at Washington University School of Medicine in St. Louis have found.

Malfunctioning protein a cause of Alzheimer's plaques

June 30, 2011
(Medical Xpress) -- In a new study published in Science Translational Medicine, scientists from the Washington University School of Medicine in St Louis reveal their discovery of a protein made by an Alzheimer’s gene ...

Recommended for you

Scientists discover why some people with brain markers of Alzheimer's have no dementia

August 16, 2018
A new study from The University of Texas Medical Branch at Galveston has uncovered why some people that have brain markers of Alzheimer's never develop the classic dementia that others do. The study is now available in the ...

Researchers identify new genes that may contribute to Alzheimer's disease

August 14, 2018
Researchers from Boston University School of Medicine, working with scientists across the nation on the Alzheimer's Disease Sequencing Project (ADSP), have discovered new genes that will further current understanding of the ...

Deaths from resident-to-resident incidents in dementia offers insights to inform policy

August 14, 2018
Analyzing the incidents between residents in dementia in long-term care homes may hold the key to reducing future fatalities among this vulnerable population, according to new research from the University of Minnesota School ...

Scientists propose a new lead for Alzheimer's research

August 14, 2018
A University of Adelaide-led team of scientists has suggested a potential link between iron in our cells and the rare gene mutations that cause Alzheimer's disease, which could provide new avenues for future research.

Eye conditions provide new lens screening for Alzheimer's disease

August 8, 2018
Alzheimer's disease is difficult to diagnose as well as treat, but researchers now have a promising new screening tool using the window to the brain: the eye.

Potential indicator for the early detection of dementias

August 7, 2018
Researchers at the University of Basel have discovered a factor that could support the early detection of neurodegenerative diseases such as Alzheimer's or Parkinson's. This cytokine is induced by cellular stress reactions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.