Scientists show biological mechanism can trigger epileptic seizures

September 19, 2012, Cincinnati Children's Hospital Medical Center

Scientists have discovered the first direct evidence that a biological mechanism long suspected in epilepsy is capable of triggering the brain seizures – opening the door for studies to seek improved treatments or even preventative therapies.

Researchers at Cincinnati Children's Hospital Medical Center report Sept. 19 in Neuron that molecular disruptions in small neurons called granule cells – located in the dentate gyrus region of the brain – caused brain seizures in mice similar to those seen in human .

The dentate gyrus is in the hippocampus of the , and temporal lobe epilepsy is one of the most common forms of the disorder.

"Epilepsy is one of those rare disorders where we have no real preventative therapies, and current treatments after diagnosis can have significant side effects," said Steven Danzer, PhD, principal investigator on the study and a neuroscientist in the Department of Anesthesia at Cincinnati Children's. "Establishing which cells and mechanisms are responsible for the seizures allows us to begin working on ways to control or eliminate the problem therapeutically, and in a more precise manner."

Epilepsy can develop from a wide range of causes, including birth defects in children that disrupt normal brain development. It can also surface in children and adults who suffer serious brain injuries. These individuals can have high risk of developing some form of epilepsy, depending on the location and severity of their injury, Danzer said.

Technical advances in genetically altering to mimic human disease made it possible for the scientists to generate animals with a specific molecular disruption in dentate gyrus granule cells (DGCs). DGCs are one of only two populations of that continue to form in significant numbers in the mature brain – the other being . This is beneficial considering the is responsible for , and the dentate gyrus acts as a gate for excitatory signals in the brain that can lead to seizures if not properly regulated.

The presence of abnormal DGCs in epilepsy has been observed for decades, although evidence linking them to seizures was lacking until the current study. Danzer and his colleagues were able to delete a gene called PTEN from mouse DGCs that formed after birth. This caused hyper-activation of a molecular pathway called mTOR (mammalian target of rapamycin), which regulates cell growth and is also linked to tumor formation and cancer when hyper-activated under certain circumstances.

In tests by Danzer and his colleagues, hyper-activation of mTOR caused mice to develop abnormal neural connections among their DGCs – similar to that observed in human temporal lobe epilepsy – and the animals experienced seizures. Abnormal neural connections and seizures occurred even in mice that had the PTEN gene deleted in less than 10 percent of their total DGC population, strengthening the link between biological disruption of DGCs and seizures.

When researchers treated epileptic mice with a drug that blocks the mTOR pathway – rapamycin – the seizures stopped, solidifying the link to the PTEN-mTOR pathway. Rapamycin has been tested successfully at Cincinnati Children's in the treatment of a disease called tuberous sclerosis, in which benign but still dangerous tumors can form around critical organs. Interestingly, people with tuberous sclerosis are also at risk for developing epilepsy, Danzer said. Newer mTOR inhibitors are also being tested at Cincinnati Children's for the treatment of epilepsy.

Danzer is following up the current study by trying to eliminate abnormal DGCs from the brains of mice that already have epilepsy and to see if this will stop the seizures. Researchers are attempting this by treating mice systemically with diphtheria toxin.

Although diphtheria toxin is not normally toxic to mouse cells, in their experiments the researchers will add a molecule to abnormal mouse DGCs that binds with the toxin. In theory, this should allow the toxin to kill off abnormal DGCs. If treatment stops the , it would further verify the connection between abnormal DGCs and the onset of epilepsy, Danzer said. This would also allow researchers to begin laboratory testing of prospective therapeutic strategies for treatment and prevention.

Mutations involving PTEN and the mTOR pathway have also been identified in other neurological conditions, such as autism and schizophrenia. Danzer said findings in the current study will likely attract the interest of researchers studying these diseases and others involving abnormal granule neurons generated after birth.

"The profound impact of disrupting this pathway in just a small number of granule cells suggests the dentate may be a critical target for mTOR pathway mutations in other neurological diseases," Danzer said. "We believe will be surprised by the huge neurological impact of granule cell disruption and interested in the demonstration of a potentially novel disease mechanism."

Explore further: Preventing autism after epilepsy

Related Stories

Preventing autism after epilepsy

May 7, 2012
(Medical Xpress) -- Early-life seizures are known to be associated with autism, and studies indicate that about 40 percent of patients with autism also have epilepsy. A study from Boston Children’s Hospital finds a reason ...

Recommended for you

Brainwaves show how exercising to music bends your mind

February 18, 2018
Headphones are a standard sight in gyms and we've long known research shows listening to tunes can be a game-changer for your run or workout.

To sleep, perchance to forget

February 17, 2018
The debate in sleep science has gone on for a generation. People and other animals sicken and die if they are deprived of sleep, but why is sleep so essential?

Lab-grown human cerebellar cells yield clues to autism

February 16, 2018
Increasing evidence has linked autism spectrum disorder (ASD) with dysfunction of the brain's cerebellum, but the details have been unclear. In a new study, researchers at Boston Children's Hospital used stem cell technology ...

Fragile X syndrome neurons can be restored, study shows

February 16, 2018
Fragile X syndrome is the most frequent cause of intellectual disability in males, affecting one out of every 3,600 boys born. The syndrome can also cause autistic traits, such as social and communication deficits, as well ...

Brain-machine interface study suggests how brains prepare for action

February 16, 2018
Somewhere right now in Pyeongchang, South Korea, an Olympic skier is thinking through the twists and spins she'll make in the aerial competition, a speed skater is visualizing how he'll sneak past a competitor on the inside ...

Humans blink strategically in response to environmental demands

February 16, 2018
If a brief event in our surroundings is about to happen, it is probably better not to blink during that moment. A team of researchers at the Centre for Cognitive Science from Technische Universität Darmstadt published a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.