Researchers identify stem cells responsible for tissue repair

September 4, 2012

The skin, which is an essential barrier that protects our body against the external environment, undergoes constant turnover throughout life to replace dead cells that are constantly sloughed off from the skin surface. During adult life, the number of cells produced must exactly compensate for the number of cells lost. Different theories have been proposed to explain how this delicate balance is achieved.

In a new study published in Nature, researchers lead by Pr. Cédric Blanpain, MD/PhD, FNRS/FRS researcher and WELBIO investigator at the IRIBHM, Université libre de Bruxelles, Belgium, in collaboration with Pr. Benjamin Simons, University of Cambridge, UK, demonstrate the existence of a new population of stem cells that give rise to progenitor cells that ensure the daily maintenance of the epidermis and demonstrate the major contribution of epidermal stem cells during wound healing.

In this new study, Guilhem Mascré and colleagues used novel genetic lineage tracing experiments to fluorescently mark two distinct epidermal , and follow their survival and contribution to the maintenance of the epidermis overtime. Interestingly, in doing so, they uncover the existence of two types of dividing cells. One population of proliferative cells presented a very long term survival potential while the other population is progessively lost overtime. In collaboration with Pr. Benjamin D. Simons, the authors developed a mathematical model of their lineage tracing analysis. The authors proposed that the skin epidermis is hierarchically organized with slow cycling stem cells residing on the top of the cellular hierarchy that give rise to more rapidly cycling progenitor cells that ensure the daily maintenance of the skin epidermis. Analysis of confirms the existence of slow cycling stem cells and gene profiling experiments demonstrate that the stem and the progenitors cells are characterized by distinct .
     
Importantly, by assessing the contribution these two populations of cells during wound healing, they found that only stem cells are capable of extensive tissue regeneration and undergo major expansion during this repair process, while the progenitors did not expand significantly, and only provide a short-lived contribution to the wound healing response. As well as resolving the cellular hierarchy of epidermis, this is the first demonstration of a critical role of epidermal SC during . "It was amazing to see these long trails of cells coming from a single stem cell located at a very long distance from the wound to repair the epidermis" comments Cédric Blanpain, the senior author of this study.
   
This work demonstrates the existence of slow-cycling stem cells that promote tissue repair and more rapidly cycling progenitors that ensure the daily maintenance of the epidermis. A similar population of slow cycling stem cells that can be rapidly mobilized in case of sudden need has been observed in other tissues, such as the blood, muscle and hair follicle, and the partition between rapidly cycling and slow cycling could be relatively conserved across the different tissues. This study may have important implications in regenerative medicine in particular for skin repair in severely burnt patients or in chronic wounds.

Explore further: The key (proteins) to self-renewing skin

More information: Guilhem Mascré, Sophie Dekoninck, Benjamin Drogat, Khalil Kass Youssef, Sylvain Brohée, Panogiata A. Sotiropoulou, Benjamin D. Simons and Cédric Blanpain. Distinct contribution of Stem and progenitor cells to epidermal maintenance. Nature 2012, DOI: 10.1038/nature11393

Related Stories

The key (proteins) to self-renewing skin

July 5, 2012
In the July 6 issue of Cell Stem Cell, researchers at the University of California, San Diego School of Medicine describe how human epidermal progenitor cells and stem cells control transcription factors to avoid premature ...

Tales from the crypt: Study on gut cell regeneration reconciles long-standing research controversy

November 11, 2011
The cells that help to absorb food and liquid that humans consume are constantly being produced. The various cell types that do this come from stem cells that reside deep in the inner recesses of the accordion-like folds ...

Recommended for you

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.