Breast cancer cells spread by digging their escape route

October 23, 2012
Breast cancer cells spread by digging their escape route

Breast cancer cells puncture  holes into neighbouring tissues and crawl though the spaces they create to spread around the body, according to research published in the Journal of Cell Biology.

Scientists at Cancer Research UK's Beatson Institute in Glasgow discovered that there are high levels of a protein called N-WASP in .

The protein helps form branches with sharp points on the by rearranging the cell's internal 'skeleton', made of a protein called actin. Actin is essential in all cells for structural support, movement and shape changes.

The branches with sharp points – called pseudopodia – can grab onto and poke holes into the , the supporting tissue in-between cells. And the team showed that enzymes attach to the and dig into the extracellular matrix, creating larger spaces.

 Cancer cells invade their surrounding environment by a combination of pushing and pulling into the newly created spaces – movement which is captured for the first time in 3D on video.

The scientists showed that removing N-WASP from cells resulted in much blunter protrusions, to which fewer enzymes became attached. This reduced the ability of the cells to puncture their surrounding extracellular matrix and spread.

Lead author, Dr Laura Machesky, at Cancer Research UK's Beatson Institute in Glasgow, said: "Our exciting results reveal a completely new process by which cells can break away from a tumour to invade surrounding spaces and spread around the body. We found that cells assemble specialised structures, with the ability to hold onto the surrounding tissue matrix and dig tunnels into it, which they can then crawl through.

"Our research suggests that N-WASP is a promising for the development of drugs to combat cancer spread.  We were particularly intrigued because blocking N-WASP activity didn't affect healthy cells, so we think that N-WASP could be specifically targeted to prevent cancer spread."

Dr Julie Sharp, Cancer Research UK's senior science information manager, said: "This important research reveals fresh understanding of how cancer spreads, which will help scientists to translate discoveries into effective treatments to beat cancer.

"Most cancer deaths are caused when cancer cells travel to new sites within the body and grow as secondary tumours so there's an urgent need to find a way to stop this happening.

"We're funding groundbreaking lab research into how cancer cells move around the body as well as important clinical trials which aim to combat the advanced disease. Finding the best ways to tackle cancer spread will save thousands more lives every year."

Explore further: Scientists discover how cancers generate muscle-like contractions to spread around the body

More information: Journal of Cell Biology. N-WASP coordinates the delivery and F-actin mediated capture of MT1-MMP at invasive pseudopods to drive matrix remodelling and cancer cell invasion.

Related Stories

Scientists discover how cancers generate muscle-like contractions to spread around the body

August 16, 2011
Cancer Research UK-funded scientists have discovered that a protein called JAK triggers contractions in tumors which allows cancer cells to squeeze though tiny spaces and spread, in research published in Cancer Cell today.

Researchers discover protein that could help prevent the spread of cancer

May 4, 2011
A protein capable of halting the spread of breast cancer cells could lead to a therapy for preventing or limiting the spread of the disease.

Scientists discover that squeezed cells pop out of overcrowded tissues

April 16, 2012
(Medical Xpress) -- Cancer Research UK scientists have shown that increasing pressure ejects surplus healthy cells from overcrowded tissues, revealing a possible link between this process  and the spread of cancer, according ...

Research makes significant cancer breakthrough

August 8, 2012
(Medical Xpress) -- A major breakthrough by scientists at Queen's University Belfast could lead to more effective treatments for throat and cervical cancer. The discovery could see the development of new therapies, which ...

Protein prompting cells to sprout legs could cause skin cancer to spread

September 15, 2011
Cancer Research UK scientists have discovered that a protein called Rac1 prompts pigment cells to sprout long ‘legs’ that could propel skin cancer cells, allowing them to spread, according to research published ...

Recommended for you

Comparison of screening recommendations indicates annual mammography

August 21, 2017
When to initiate screening for breast cancer, how often to screen, and how long to screen are questions that continue to spark emotional debates. A new study compares the number of deaths that might be prevented as a result ...

Vitamin C may encourage blood cancer stem cells to die

August 17, 2017
Vitamin C may "tell" faulty stem cells in the bone marrow to mature and die normally, instead of multiplying to cause blood cancers. This is the finding of a study led by researchers from Perlmutter Cancer Center at NYU Langone ...

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Scientists develop blood test that spots tumor-derived DNA in people with early-stage cancers

August 16, 2017
In a bid to detect cancers early and in a noninvasive way, scientists at the Johns Hopkins Kimmel Cancer Center report they have developed a test that spots tiny amounts of cancer-specific DNA in blood and have used it to ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.