Breast cancer cells spread by digging their escape route

October 23, 2012
Breast cancer cells spread by digging their escape route

Breast cancer cells puncture  holes into neighbouring tissues and crawl though the spaces they create to spread around the body, according to research published in the Journal of Cell Biology.

Scientists at Cancer Research UK's Beatson Institute in Glasgow discovered that there are high levels of a protein called N-WASP in .

The protein helps form branches with sharp points on the by rearranging the cell's internal 'skeleton', made of a protein called actin. Actin is essential in all cells for structural support, movement and shape changes.

The branches with sharp points – called pseudopodia – can grab onto and poke holes into the , the supporting tissue in-between cells. And the team showed that enzymes attach to the and dig into the extracellular matrix, creating larger spaces.

 Cancer cells invade their surrounding environment by a combination of pushing and pulling into the newly created spaces – movement which is captured for the first time in 3D on video.

The scientists showed that removing N-WASP from cells resulted in much blunter protrusions, to which fewer enzymes became attached. This reduced the ability of the cells to puncture their surrounding extracellular matrix and spread.

Lead author, Dr Laura Machesky, at Cancer Research UK's Beatson Institute in Glasgow, said: "Our exciting results reveal a completely new process by which cells can break away from a tumour to invade surrounding spaces and spread around the body. We found that cells assemble specialised structures, with the ability to hold onto the surrounding tissue matrix and dig tunnels into it, which they can then crawl through.

"Our research suggests that N-WASP is a promising for the development of drugs to combat cancer spread.  We were particularly intrigued because blocking N-WASP activity didn't affect healthy cells, so we think that N-WASP could be specifically targeted to prevent cancer spread."

Dr Julie Sharp, Cancer Research UK's senior science information manager, said: "This important research reveals fresh understanding of how cancer spreads, which will help scientists to translate discoveries into effective treatments to beat cancer.

"Most cancer deaths are caused when cancer cells travel to new sites within the body and grow as secondary tumours so there's an urgent need to find a way to stop this happening.

"We're funding groundbreaking lab research into how cancer cells move around the body as well as important clinical trials which aim to combat the advanced disease. Finding the best ways to tackle cancer spread will save thousands more lives every year."

Explore further: Scientists discover how cancers generate muscle-like contractions to spread around the body

More information: Journal of Cell Biology. N-WASP coordinates the delivery and F-actin mediated capture of MT1-MMP at invasive pseudopods to drive matrix remodelling and cancer cell invasion.

Related Stories

Scientists discover how cancers generate muscle-like contractions to spread around the body

August 16, 2011
Cancer Research UK-funded scientists have discovered that a protein called JAK triggers contractions in tumors which allows cancer cells to squeeze though tiny spaces and spread, in research published in Cancer Cell today.

Researchers discover protein that could help prevent the spread of cancer

May 4, 2011
A protein capable of halting the spread of breast cancer cells could lead to a therapy for preventing or limiting the spread of the disease.

Scientists discover that squeezed cells pop out of overcrowded tissues

April 16, 2012
(Medical Xpress) -- Cancer Research UK scientists have shown that increasing pressure ejects surplus healthy cells from overcrowded tissues, revealing a possible link between this process  and the spread of cancer, according ...

Research makes significant cancer breakthrough

August 8, 2012
(Medical Xpress) -- A major breakthrough by scientists at Queen's University Belfast could lead to more effective treatments for throat and cervical cancer. The discovery could see the development of new therapies, which ...

Protein prompting cells to sprout legs could cause skin cancer to spread

September 15, 2011
Cancer Research UK scientists have discovered that a protein called Rac1 prompts pigment cells to sprout long ‘legs’ that could propel skin cancer cells, allowing them to spread, according to research published ...

Recommended for you

Possible new immune therapy target in lung cancer

October 18, 2017
A study from Bern University Hospital in collaboration with the University of Bern shows that so-called perivascular-like cells from lung tumors behave abnormally. They not only inadequately support vascular structures, but ...

New bowel cancer drug target discovered

October 17, 2017
Researchers at the Francis Crick Institute have discovered a new drug target for bowel cancer that is specific to tumour cells and therefore less toxic than conventional therapies.

Many pelvic tumors in women may have common origin—fallopian tubes

October 17, 2017
Most—and possibly all—ovarian cancers start, not in ovaries, but instead in the fallopian tubes attached to them.

Researchers find novel mechanism of resistance to anti-cancer drugs

October 17, 2017
The targeted anti-cancer therapies cetuximab and panitumumab are mainstays of treatment for advanced colorectal cancer, the second leading cause of cancer-related deaths in the United States. However, many patients have tumors ...

Using artificial intelligence to improve early breast cancer detection

October 17, 2017
Every year 40,000 women die from breast cancer in the U.S. alone. When cancers are found early, they can often be cured. Mammograms are the best test available, but they're still imperfect and often result in false positive ...

New assay may boost targeted treatment of non-Hodgkin lymphoma

October 17, 2017
Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer and the most frequently diagnosed non-Hodgkin lymphoma worldwide (nearly 40% of cases). Recent advancements indicate that both the prognosis and choice of treatment ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.