Discovery sheds light on Alzheimer's mystery

October 22, 2012 by April Reese Sorrow, University of Georgia

(Medical Xpress)—In 1906, when Alois Alzheimer discovered the neurodegenerative disease that would later be named for him, he saw amyloid-beta plaques and neurofibrillary tangles inside the brain. Several decades later, abnormal protein structures called Hirano bodies also were frequently observed in patients with neurodegenerative diseases.

A hundred years and many millions of suffering patients and families later, scientists still don't know what these structures do. They do know, thanks to new research from the University of Georgia, that Hirano bodies may have a protective role in the brain of Alzheimer's patients.

Matthew Furgerson, a doctoral candidate in the UGA Franklin College of Arts and Sciences department of biochemistry and molecular biology, used cell culture models to study the role of Hirano bodies in induced by AICD, or a fragment of AICD called c31, that are released inside the cell during cleavage of the amyloid . This cleavage also produces amyloid-beta, which forms extracellular plaques.

Furgerson found mixtures of amyloid precursor protein, c31 and tau-the protein that forms the intracellular neurofibrillary tangles-or of AICD and tau cause synergistic cell death that is significantly higher than cell death from amyloid precursor protein, c31, AICD or tau alone.

"This synergistic cell death is very exciting," Furgerson said. "Other groups have shown synergy between extracellular amyloid beta or with tau, but these new results show that there may be an important interaction that occurs inside the cells."

The results of this study were published in the September issue of . Ruth Furukawa, associate research scientist, and Marcus Fechheimer, professor of , are co-authors on the paper.

Furgerson also found cell death is significantly reduced in cells that contain Hirano bodies compared to cells without Hirano bodies. The protective effect of Hirano bodies was observed in in both the presence and absence of tau. The findings reveal that Hirano bodies have a protective role during the progression of Alzheimer's disease.

While this research offers no cure for the disease, it does offer some understanding about how the disease operates. The lab has been a leader of Hirano body research for more than a decade due to their development of cell culture and mouse model systems.

Before the mouse model, the only way to study these abnormal structures was in post-mortem brain tissue. The recently developed Hirano body mouse model is currently being used with an Alzheimer's model mouse to investigate whether cell culture results can translate to a complex animal.

"I feel privileged to lead a team that might be able to contribute knowledge to help us understand Alzheimer's disease processes," Fechheimer said. "Other groups have focused on plaques and tangles, and we don't know as much about Hirano bodies. Results from the cell culture studies are exciting and reveal the protective role of Hirano bodies. Our ongoing studies with mouse models are essential to defining the role of Hirano bodies in Alzheimer's disease progression in a whole animal."

Explore further: Researchers develop first mouse model to study important aspect of Alzheimer's

More information: www.ncbi.nlm.nih.gov/pmc/articles/PMC3445605/

Related Stories

Researchers develop first mouse model to study important aspect of Alzheimer's

November 7, 2011
Hirano bodies are almost indescribably tiny objects found in nerve cells of people suffering from conditions such as Alzheimer's, mad cow and Lou Gehrig's diseases. Yet for decades, researchers weren't sure if these structures ...

Case of mistaken identity: Study questions role of A-beta molecules in Alzheimer's disease pathology

June 28, 2011
Increasingly, researchers are suggesting that amyloid plaques and neurofibrillary tangles may be relatively late manifestations in the course of Alzheimer's disease (AD) pathology. Identifying earlier events in the development ...

Road block as a new strategy for the treatment of Alzheimer's

August 22, 2011
Blocking a transport pathway through the brain cells offers new prospects to prevent the development of Alzheimer's. Wim Annaert and colleagues of VIB and K.U. Leuven discovered that two main agents involved in the inception ...

Alzheimer's vaccine cures memory of mice

December 9, 2011
(Medical Xpress) -- A vaccine that slows the progression of Alzheimer's disease and other types of dementia has been developed by researchers at the University of Sydney's Brain and Mind Research Institute (BMRI).

Alzheimer's protein detected in brain fluid of healthy mice

September 21, 2011
(Medical Xpress) -- One of the most promising markers of Alzheimer’s disease, previously thought only to be inside nerve cells, now appears to be normally released from nerve cells throughout life, according to researchers ...

Recommended for you

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Anxiety: An early indicator of Alzheimer's disease?

January 12, 2018
A new study suggests an association between elevated amyloid beta levels and the worsening of anxiety symptoms. The findings support the hypothesis that neuropsychiatric symptoms could represent the early manifestation of ...

One of the most promising drugs for Alzheimer's disease fails in clinical trials

January 11, 2018
To the roughly 400 clinical trials that have tested some experimental treatment for Alzheimer's disease and come up short, we can now add three more.

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018
Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread ...

Molecular mechanism behind HIV-associated dementia revealed

January 5, 2018
For the first time, scientists have identified and inhibited a molecular process that can lead to neurodegeneration in patients with HIV, according to a Northwestern Medicine study published in Nature Communications.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.