Researchers at the doorstep of stem cell therapies for MS, other myelin disorders

October 25, 2012

When the era of regenerative medicine dawned more than three decades ago, the potential to replenish populations of cells destroyed by disease was seen by many as the next medical revolution. However, what followed turned out not to be a sprint to the clinic, but rather a long tedious slog carried out in labs across the globe required to master the complexity of stem cells and then pair their capabilities and attributes with specific diseases.

In a review article appearing today in the journal Science, University of Rochester Medical Center scientists Steve Goldman, M.D., Ph.D., Maiken Nedergaard, Ph.D., and Martha Windrem, Ph.D., contend that researchers are now on the threshold of human application of stem cell therapies for a class of known as myelin disorders – a long list of diseases that include conditions such as multiple sclerosis, white matter stroke, cerebral palsy, certain dementias, and rare but fatal childhood disorders called pediatric leukodystrophies.

"Stem cell biology has progressed in many ways over the last decade, and many potential opportunities for clinical translation have arisen," said Goldman. "In particular, for diseases of the , which have proven difficult to treat because of the brain's great cellular complexity, we postulated that the simplest cell types might provide us the best opportunities for cell therapy."

The common factor in myelin disorders is a cell called the oligodendrocyte. These cells arise, or are created, by another cell found in the central called the glial progenitor cell. Both oligodendrocytes and their "sister cells" – called astrocytes – share this same parent and serve critical support functions in the central nervous systems.

Oligodendrocytes produce myelin, a fatty substance that insulates the fibrous connections between that are responsible for transmitting signals throughout the body. When myelin-producing cells are lost or damaged in conditions such as multiple sclerosis and spinal cord injury, signals traveling between nerves are weakened or even lost. Astrocytes also play an essential role in the brain. Long overlooked and underappreciated, it is now understood that astrocytes are critical to the health and signaling function of oligodendrocytes as well as neurons.

Glial progenitor cells and their offspring represent a promising target for stem cell therapies, because – unlike other cells in the central nervous system – they are relatively homogeneous and more readily manipulated and transplanted. In the case of oligodendrocytes, multiple animal studies have shown that, once transplanted, these cells will disperse and begin to repair or "remyelinate" damaged areas.

"Glial cell dysfunction accounts for a broad spectrum of diseases, some of which – like the white matter degeneration of aging – are far more prevalent than we previously realized," said Goldman. "Yet glial progenitor cells are relatively easy to work with, especially since we don't have to worry about re-establishing precise point to point connections as we must with neurons. This gives us hope that we may begin to treat diseases of glia by direct transplantation of competent progenitor cells."

Scientists have reached this point, according to the authors, because of a number of key advances. Better imaging technologies – namely advanced MRI scanners – now provide greater insight and clarity into the specific damage caused in the central nervous system by myelin disorders. These technologies also enable scientists to precisely follow the results of their work.

Even more importantly, researchers have overcome numerous obstacles and made significant strides in their ability to manipulate and handle these cells. Goldman's lab in particular has been a pioneer in understanding the precise chemical signals necessary to coax into making glial progenitor cells, as well as those needed to "instruct" these cells to make or astrocytes. His lab has been able to produce these cells from a number of different sources – including "reprogramming" skin cells, a technology that has the advantage of genetically matching transplanted cells to the donor. They have also developed techniques to sort these cells based on unique identifying markers, a critical step that ensures the purity of the cells used in transplantation, lowering the risk for tumor formation.

Nedergaard's lab has studied the integration of these cells into existing neural networks, and well as in imaging their structure and function in the adult nervous system. Together, the two labs have developed models of both human neural activity and disease based on animals transplanted with glial progenitor cells, which will enable human neural cells to be evaluated in the context of the live adult brain – as opposed to a test tube. This work has already opened new avenues in both modeling and potentially treating human glial disease.

All of these advances, contend the authors, have accelerated research to the point where human studies for myelin disorders are close at hand. For instance, diseases such as multiple sclerosis, which benefit from a new generation of stabilizing anti-inflammatory drugs, may be an especially appealing target for progenitor-based cell therapies which could repair the now permanent and untreatable damage to the central nervous system that occurs in the disease. Similarly, the authors point to a number of the childhood diseases of white matter that now appear ripe for cell-based treatment.

"We have developed a tremendous amount of information about these and how to produce them," said Goldman. "We understand the different cell populations, their genetic profiles, and how they behave in culture and in a variety of animal models. We also have better understanding of the disease target environments than ever before, and have the radiographic technologies to follow how patients do after transplantation. Moving into clinical trials for myelin disorders is really just a question of resources at this point."

Explore further: A new program for neural stem cells

Related Stories

A new program for neural stem cells

May 12, 2011
German researchers succeed in obtaining brain and spinal cord cells from stem cells of the peripheral nervous system.

Precision with stem cells a step forward for treating MS, other diseases

October 13, 2011
Scientists have improved upon their own previous world-best efforts to pluck out just the right stem cells to address the brain problem at the core of multiple sclerosis and a large number of rare, fatal children's diseases.

Researchers develop gene therapy to boost brain repair for demyelinating diseases

February 9, 2012
(Medical Xpress) -- Our bodies are full of tiny superheroes—antibodies that fight foreign invaders, cells that regenerate, and structures that ensure our systems run smoothly. One such structure is myelin—a material ...

Recommended for you

Lifestyle changes to stave off Alzheimer's? Hints, no proof

July 20, 2017
There are no proven ways to stave off Alzheimer's, but a new report raises the prospect that avoiding nine key risks starting in childhood just might delay or even prevent about a third of dementia cases around the world.

Steering an enzyme's 'scissors' shows potential for stopping Alzheimer's disease

July 19, 2017
The old real estate adage about "location, location, location" might also apply to the biochemical genesis of Alzheimer's disease, according to new research from the University of British Columbia.

Brain scans may change care for some people with memory loss

July 19, 2017
Does it really take an expensive brain scan to diagnose Alzheimer's? Not everybody needs one but new research suggests that for a surprising number of patients whose memory problems are hard to pin down, PET scans may lead ...

Can poor sleep boost odds for Alzheimer's?

July 18, 2017
(HealthDay)— Breathing problems during sleep may signal an increased risk for Alzheimer's disease, a trio of studies suggests.

Hearing is believing: Speech may be a clue to mental decline

July 17, 2017
Your speech may, um, help reveal if you're uh ... developing thinking problems. More pauses, filler words and other verbal changes might be an early sign of mental decline, which can lead to Alzheimer's disease, a study suggests.

Bacteria found in Alzheimer's brains

July 17, 2017
Researchers in the UK have used DNA sequencing to examine bacteria in post-mortem brains from patients with Alzheimer's disease. Their findings suggest increased bacterial populations and different proportions of specific ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

mjesfahani
3 / 5 (1) Oct 26, 2012
Sometimes Stem Cells do not work for neurological diseases like Multiple Sclerosis. Maybe in future stem cells will be taken from a peace of your skin instead of current stem cells which are taken from the fatty tissues of your body.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.