Nerve signal discovery backs Nobel winner's theory

October 11, 2012

Scientists have proved a 60-year-old theory about how nerve signals are sent around the body at varying speeds as electrical impulses.

Researchers tested how these signals are transmitted through , which enables us to move and recognise sensations such as touch and smell.

The findings from the University of Edinburgh have validated an idea first proposed by Sir Andrew Huxley.

It has been known for many years that an insulating layer – known as myelin – which surrounds nerve fibres is crucial in determining how quickly these signals are sent.

This insulating myelin is interrupted at regular intervals along the nerve by gaps called nodes.

Scientists, whose work was funded by the Wellcome Trust, have now proved that the longer the distance between nodes, the quicker the nerve fibres send signals down the nerves.

The theory that the distance between these gaps might affect the speed of electrical signals was first proposed by Sir Andrew Huxley, who won the Nobel Prize in 1963 for his work on electrical signalling in the nervous system, and who died earlier this year.

The study, published in the journal Current Biology, will help provide insight into what happens in people with . It will also shed light on how nerves develop before and after birth.

Professor Peter Brophy, Director of the University of Edinburgh's Centre for Neuroregeneration, said: "The study gives us greater insight into how the central and peripheral nervous systems work and what happens after nerves become injured. We know that have the capacity to repair, but shorter lengths of insulation around the nerve fibres after repair affect the speed with which impulses are sent around the body."

The researchers found that when the myelin reached a certain length, the speed with which nerves impulses were conducted reached a peak.

The study, carried out in mice, also confirmed that a protein – periaxin – plays a key role in regulating the length of myelin layers around nerve fibres.

Explore further: Hopes for reversing age-associated effects in MS patients

Related Stories

Hopes for reversing age-associated effects in MS patients

January 6, 2012
New research highlights the possibility of reversing ageing in the central nervous system for multiple sclerosis (MS) patients. The study is published today, 06 January, in the journal Cell Stem Cell.

Recommended for you

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

jonnyboy
1 / 5 (3) Oct 11, 2012
really?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.