Prebiotic may help patients with intestinal failure grow new and better gut

October 15, 2012

Adding the right prebiotic to the diets of pediatric patients with intestinal failure could replace intravenous feeding, says a new University of Illinois study.

"When we fed the carbohydrate fructooligosacharide (FOS) as a , the grew and increased in function," said Kelly A. Tappenden, a U of I professor of nutrition and gastrointestinal physiology. "The study showed that using the correct pre- and probiotic in combination could enhance these results even more."

When FOS enters the intestines, bacteria convert it into butyrate, a short-chain fatty acid that increases the size of the gut and its ability to digest and absorb nutrients, she said.

But today's IV solutions don't contain butyrate and adding it would entail drug development trials and regulatory red tape. She wanted to see if adding this carbohydrate to the diet while continuing to provide most nutrients intravenously would cause the gut to start producing butyrate on its own. It worked.

According to Tappenden, at least 10,000 U.S. patients are totally reliant on intravenous feeding because their intestines have been surgically shortened.

Many of these patients are who develop necrotizing enterocolitis, a kind of gangrene of the intestine. In the U.S., one in eight infants is a preemie, and removing necrotized, or dead, intestine is the most common surgical emergency in these babies.

"Surgery saves their lives, but with so much removed, they're unable to digest or absorb nutrients. These babies are also at risk for long-term complications, such as bone demineralization and . Our goal is to take kids who've had this resection and cause their gut to grow and adapt," she said.

She tested her hypothesis about butyrate using newborn piglets, an excellent model for the human infant in metabolism and physiology. Piglets with intestinal failure were assigned to one of four groups: a ; a group whose diet contained FOS, a carbohydrate given as a prebiotic to stimulate the production of butyrate by beneficial bacteria; a probiotic, or actual live bacteria; and a combination of pre- and probiotics.

"We believed that bacteria in the gut would use the prebiotic to make butyrate and support intestinal growth. But we thought that might only happen in the group that received both pre- and probiotics because we didn't know if the newborn gut would have enough bacteria to make this important short-chain fatty acid."

Actually, the neonatal piglets did have enough in their guts, and the prebiotic alone was effective in increasing intestinal function and structure, she said.

"In fact, the probiotic that we used in one of the groups eliminated the beneficial effect of the prebiotic. That shows us that we need to be exceptionally careful in selecting the probiotic we use, matching it to the specific disease," she noted. Many consumers believe all probiotics are equal, but the effect of specific bacterial strains is different, she said.

"At this point, we can only recommend consumption of the FOS prebiotic alone," she added.

Explore further: New infant formula ingredients boost babies' immunity by feeding their gut bacteria

More information: The article appears in the September 2012 issue of the Journal of Parenteral and Enteral Nutrition and is available online at http://pen.sagepub.com/content/current. Jennifer L. Barnes of the U of I and Bolette Hartmann and Jens J. Holst of the University of Copenhagen, Copenhagen, Denmark, are co-authors of the study, which was funded by grants from the National Institutes of Health.

Related Stories

New infant formula ingredients boost babies' immunity by feeding their gut bacteria

February 29, 2012
Adding prebiotic ingredients to infant formula helps colonize the newborn's gut with a stable population of beneficial bacteria, and probiotics enhance immunity in formula-fed infants, two University of Illinois studies report.

Study sheds new light on importance of human breast milk ingredient

May 14, 2012
A new University of Illinois study shows that human milk oligosaccharides, or HMO, produce short-chain fatty acids that feed a beneficial microbial population in the infant gut. Not only that, the bacterial composition adjusts ...

Recommended for you

Long-lasting blood vessel repair in animals via stem cells

October 23, 2017
Stem cell researchers at Emory University School of Medicine have made an advance toward having a long-lasting "repair caulk" for blood vessels. The research could form the basis of a treatment for peripheral artery disease, ...

Study reveals connection between microbiome and autoimmune disorders

October 23, 2017
Many people associate the word "bacteria" with something dirty and disgusting. Dr. Pere Santamaria disagrees. Called the microbiome, the bacteria in our bodies have all kinds of positive effects on our health, Santamaria ...

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.