New findings could help speed recovery, alleviate pain associated with spinal cord injury

October 15, 2012

Research released today demonstrates how new scientific knowledge is driving innovative treatments for spinal cord injuries. Spinal cord damage is debilitating and life-altering, limiting or preventing movement and feeling for millions worldwide, and leading to chronic health conditions and pain. The new studies suggest potential therapies for managing the aftermath of pain and pressure sores, repairing nervous system damage, and speeding recovery. The findings were presented at Neuroscience 2012, the annual meeting of the Society for Neuroscience and the world's largest source of emerging news about brain science and health.

In the United States, approximately 12,000 people are hospitalized for spinal cord injury (SCI) each year, and at least 270,000 people live with it. The initial injury is usually compounded by a wave of immune activity that can extend the initial nervous system damage, and complications of SCI may include pain and pressure sores that compromise the quality of life. New research is tackling all of these dimensions of SCI.

Today's new findings show that:

  • Nervous system tracts that are left intact but nonfunctioning following SCI appear to be reactivated through , speeding recovery of walking in a (Brian Noga, PhD, abstract 678.12, see attached summary).
  • Painful and sometime life-threatening pressure sores due to immobilizing nervous system injuries may be prevented by underwear wired to deliver tiny electrical currents that contract the paralyzed buttocks muscles, mimicking the natural fidgeting of able-bodied people (Sean Dukelow, MD, PhD, abstract 475.09, see attached summary).
  • Carbon monoxide's anti-inflammatory effects appear to accelerate healing in rats with spinal cord injury, possibly by altering the balance of immune cells and limiting the damage caused by molecules called free radicals (Yang Teng, MD, PhD, abstract 450.11, see attached summary).
  • Social contact appears to lessen the pain that follows injury. A new mouse study correlates the healing social behavior with biochemicals in the brain and spinal cord (Adam Hinzey, abstract 786.04, see attached summary).
"While the damage of SCI can appear to be immediate and dramatic, the biological events that lead to extensive nerve and tissue damage are complex, and injuries evolve over time," said press conference moderator Jacqueline Bresnahan, PhD, of the University of California, San Francisco, an expert on nervous system trauma caused by . "Today researchers are finding ways to intervene in the cascade of molecular changes that follow SCI. From understanding immune cell responses to the healing power of social contact, researchers are finding new ways to treat and rehabilitate patients."

Explore further: Realizing the potential of stem cell therapy

Related Stories

Realizing the potential of stem cell therapy

October 15, 2012
New animal studies provide additional support for investigating stem cell treatments for Parkinson's disease, head trauma, and dangerous heart problems that accompany spinal cord injury, according to research findings released ...

Research offers hope in new treatment for spinal cord injuries

May 3, 2011
Rutgers researchers have developed an innovative new treatment that could help minimize nerve damage in spinal cord injuries, promote tissue healing and minimize pain.

Evidence for spinal membrane as a source of stem cells may advance spinal cord treatment

October 28, 2011
Italian and Spanish scientists studying the use of stem cells for treating spinal cord injuries have provided the first evidence to show that meninges, the membrane which envelops the central nervous system, is a potential ...

Spinal cord treatment offers hope

November 18, 2011
Queensland University of Technology (QUT) researchers have developed a promising new treatment for spinal cord injury in animals, which could eventually prevent paralysis in thousands of people worldwide every year.

Spinal cord injuries associated with increased risk of heart disease

October 24, 2011
New research from the Heart and Stroke Foundation and the Christopher and Dana Reeve Foundation may help explain why people with spinal cord injury (SCI) have a higher risk of developing heart disease.

Recommended for you

Research redefines proteins' role in the development of spinal sensory cells

September 19, 2017
A recent study led by Samantha Butler at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overturned a common belief about how a certain class of proteins in the spinal cord regulate ...

The brain at work: Spotting half-hidden objects

September 19, 2017
How does a driver's brain realize that a stop sign is behind a bush when only a red edge is showing? Or how can a monkey suspect that the yellow sliver in the leaves is a round piece of fruit?

Team discovers how to train damaging inflammatory cells to promote repair after stroke

September 19, 2017
White blood cells called neutrophils are like soldiers in your body that form in the bone marrow and at the first sign of microbial attack, head for the site of injury just as fast as they can to neutralize invading bacteria ...

Epileptic seizures show long-distance effects

September 19, 2017
The area in which an epileptic seizure starts in the brain, may be small but it reaches other parts of the brain at distances of over ten centimeters. That distant activity, in turn, influences the epileptic core, according ...

Study uncovers markers for severe form of multiple sclerosis

September 18, 2017
Scientists have uncovered two closely related cytokines—molecules involved in cell communication and movement—that may explain why some people develop progressive multiple sclerosis (MS), the most severe form of the disease. ...

Genetically altered mice bear some hallmarks of human bipolar behavior

September 18, 2017
Johns Hopkins researchers report they have genetically engineered mice that display many of the behavioral hallmarks of human bipolar disorder, and that the abnormal behaviors the rodents show can be reversed using well-established ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.