From the twitching whiskers of babes: Naptime behavior shapes the brain

October 18, 2012

The whiskers of newborn rats twitch as they sleep, and that could open the door to new understandings about the intimate connections between brain and body. The discovery reinforces the notion that such involuntary movements are a vital contributor to the development of sensorimotor systems, say researchers who report their findings along with video of those whisker twitches on October 18 in Current Biology.

"We found that even whiskers twitch during sleep—and they do so in infant rats long before they move their whiskers in the coordinated fashion known as whisking," said Mark Blumberg of The University of Iowa. "This discovery opens up new avenues for investigating how we develop critical connections between the sensors in our body and the that interpret and organize sensory information."

In fact, the baby rats' whiskers don't just twitch, they twitch very rapidly and in complex ways. Those twitches during sleep are tied to bursts of activity in the brain, which aren't often observed when rats are awake.

The video will load shortly.
Sample video clips of individual, dual, and multiple whisker twitches are shown, as is an example of a mystacial pad movement. See Figure 1A to orient the whiskers on the snout and to identify each of the 11 whiskers and Figure 1B for the associated quiver plots. Each clip was recorded at 200 frames/s and is played back at 50 frames/s. The white light in the lower-right-hand corner indicates that the experimenter observed twitching of the distal limbs or tail, indicative of active sleep. Note that these clips only show those 11 whiskers that were monitored in these tests. Credit: Current Biology, Tiriac et al.

Other parts of the body twitch spontaneously during sleep, too, including the eyes (think "") and the limbs. "Spontaneous motor activity can play many different roles in early development and even throughout life," Blumberg explains. "It can be a source of in general as well as a source of highly specific, patterned activity that can help shape specific ."

But no one had given much thought to this activity in the very special case of whiskers, which are as important to rats as eyes are to humans. Each individual whisker maps to discrete regions of the brain that process information from that individual whisker alone. The whisker-specific form arrangements that map beautifully to the physical arrangements of whiskers on the snout.

That precise organization has made the study of whiskers very popular amongst neuroscientists seeking a basic understanding of the developmental mechanisms linking peripheral sensors and brain, and that's what makes this new discovery all the more intriguing. It might also give us a new appreciation for the important work infants are doing even as they sleep.

"One of the jobs of the infant is to learn how all the parts of the body function even as those parts are growing in size and proportion," Blumberg says. "It is a difficult job."

Explore further: Persistent sensory experience is good for aging brain

More information: Tiriac et al.: "Rapid whisker movements in sleeping newborn rats." DOI:10.1016/j.cub.2012.09.009

Related Stories

Persistent sensory experience is good for aging brain

May 24, 2012
Despite a long-held scientific belief that much of the wiring of the brain is fixed by the time of adolescence, a new study shows that changes in sensory experience can cause massive rewiring of the brain, even as one ages. ...

Recommended for you

Firing of neurons changes the cells that insulate them

August 22, 2017
Through their pattern of firing, neurons influence the behavior of the cells that upon maturation will provide insulation of neuronal axons, according to a new study publishing 22 August in the open access journal PLOS Biology ...

Activating brain region creates intense desire to use cocaine

August 22, 2017
Researchers have identified a portion of the brain that intensifies one's desire for certain rewards—in this case, mimicking addiction to cocaine.

Brain region mediates pleasure of eating

August 22, 2017
Providing the body with food is essential for survival. But even when full, we can still take pleasure in eating. Researchers at the Max Planck Institute of Neurobiology in Martinsried and the Friedrich Miescher Institute ...

Study suggests serotonin may worsen tinnitus

August 22, 2017
Millions of people suffer from the constant sensation of ringing or buzzing in the ears known as tinnitus, creating constant irritation for some and severe anxiety for others. Research by scientists at OHSU shows why a common ...

Chronic stress induces fatal organ dysfunctions via a new neural circuit

August 22, 2017
Hokkaido University researchers revealed that fatal gut failure in a multiple sclerosis (MS) mouse model under chronic stress is caused by a newly discovered nerve pathway. The findings could provide a new therapeutic strategy ...

Contact in sports may lead to differences in the brains of young, healthy athletes

August 22, 2017
People who play contact sports show changes to their brain structure and function, with sports that have greater risk of body contact showing greater effects on the brain, a new study has found.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Jeddy_Mctedder
3.7 / 5 (3) Oct 18, 2012
stuff like this has been known for a while. every time i read about how much we know about the brain , and brains in general, i only remember how little we know.
gmurphy
5 / 5 (1) Oct 18, 2012
Every time i read about how much we know about the brain and brains in general, I am enlivened by how much there is still left to find out ;)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.