Recently uncovered human counterparts to a subset of mouse immune cells may enable better vaccination strategies

October 24, 2012
Electron micrograph of cross-presenting human skin DCs, isolated based in part on their expression of high levels of the cell-surface marker CD141. Credit: 2012 A*STAR Singapore Immunology Network

Mice have made an immeasurable contribution to medicine and our overall understanding of human disease. This animal model is not without its limitations, however, and scientists are continually learning about important ways in which mouse and human biology differ.

Both human and murine immune systems, for example, function in a similar fashion, but individual subtypes of often display characteristics unlike those of their mouse counterparts. These differences make it difficult to directly translate mouse data into medically meaningful results. By identifying parallels between a crucial class of immune cells in mice and humans, a team led by Florent Ginhoux of the A*STAR Singapore Immunology Network has obtained valuable insights that should accelerate this translation.

Cells known as (DCs) are at the immune frontline, capturing pathogen-derived antigens and training other immune cells known as to recognize them via a process called 'cross-presentation'. "This is very important, as it is the only way DCs can present tumor-derived antigens or viral antigens without being a tumor cell or directly infected by a virus," explains Ginhoux. "And, it has important implications for vaccine design, where you want to get a good cytotoxic T ."

A subset of DCs found within the murine skin plays a particularly prominent role in this process, but equivalent cells have not yet been identified in humans. DC subsets that look similar but function differently from each other can be distinguished via distinct combinations of that act as a 'name tag'. Through careful analysis, Ginhoux and his co-workers isolated and characterized a population of skin cells that express high levels of the protein CD141, which effectively tags this human DC subset.

The researchers determined that these skin DCs indeed possess the needed for cross-presentation. Ginhoux believes they should offer a useful tool for training the immune system to fight disease. "Now that we know that this population exists, our aim is to understand how to mobilize it, activate it and to target it with adjuvants and antigens relevant for vaccination," he says. In the process of characterizing these cells, the researchers also succeeded in profiling the expression of various 'name tag' proteins. From these profiles, they can draw parallels between equivalent DC subsets in mice and humans, building a valuable informational resource for future research. "This will allow clear inferences to be made between mice and humans," says Ginhoux.

Explore further: Scientists discover dendritic cells key to activating human immune responses

More information: Haniffa, M., Shin, A., Bigley, V., McGovern, N., Teo, P. et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37, 60–73 (2012). dx.doi.org/10.1016/j.immuni.2012.04.012

Related Stories

Scientists discover dendritic cells key to activating human immune responses

July 16, 2012
Scientists at A*STAR’s Singapore Immunology Network (SIgN), in collaboration with Newcastle University, UK, the Singapore Institute of Clinical Sciences and clinicians from multiple hospitals in Singapore, have identified ...

Langerhans cells migrate to their final destination in multiple waves at different stages of embryonic development

August 29, 2012
As our primary interface with the outside world, the skin needs to be able to protect itself against infectious threats. Specialized cells known as Langerhans cells (LCs) (see image) are an essential component of this defense, ...

Discovery of new white blood cell reveals target for better vaccine design

July 27, 2012
Researchers in Newcastle and Singapore have identified a new type of white blood cell which activates a killing immune response to an external source – providing a new potential target for vaccines for conditions such ...

Jump-starting cheaper cancer vaccines

September 26, 2012
Dendritic cells (DCs)—workhorses of the immune system—derived from human embryonic stem cells (hESCs) may provide an economical way of generating off-the-shelf therapeutic vaccines against cancers, according to research ...

Mystery to the origin of long-lived, skin-deep immune cells uncovered

June 7, 2012
Scientists at A*STAR’s Singapore Immunology Network (SIgN) uncovered the origin of a group of skin-deep immune cells that act as the first line of defence against harmful germs and skin infections. SIgN scientists discovered ...

Recommended for you

Long-lasting blood vessel repair in animals via stem cells

October 23, 2017
Stem cell researchers at Emory University School of Medicine have made an advance toward having a long-lasting "repair caulk" for blood vessels. The research could form the basis of a treatment for peripheral artery disease, ...

Study reveals connection between microbiome and autoimmune disorders

October 23, 2017
Many people associate the word "bacteria" with something dirty and disgusting. Dr. Pere Santamaria disagrees. Called the microbiome, the bacteria in our bodies have all kinds of positive effects on our health, Santamaria ...

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.