Recently uncovered human counterparts to a subset of mouse immune cells may enable better vaccination strategies

October 24, 2012
Electron micrograph of cross-presenting human skin DCs, isolated based in part on their expression of high levels of the cell-surface marker CD141. Credit: 2012 A*STAR Singapore Immunology Network

Mice have made an immeasurable contribution to medicine and our overall understanding of human disease. This animal model is not without its limitations, however, and scientists are continually learning about important ways in which mouse and human biology differ.

Both human and murine immune systems, for example, function in a similar fashion, but individual subtypes of often display characteristics unlike those of their mouse counterparts. These differences make it difficult to directly translate mouse data into medically meaningful results. By identifying parallels between a crucial class of immune cells in mice and humans, a team led by Florent Ginhoux of the A*STAR Singapore Immunology Network has obtained valuable insights that should accelerate this translation.

Cells known as (DCs) are at the immune frontline, capturing pathogen-derived antigens and training other immune cells known as to recognize them via a process called 'cross-presentation'. "This is very important, as it is the only way DCs can present tumor-derived antigens or viral antigens without being a tumor cell or directly infected by a virus," explains Ginhoux. "And, it has important implications for vaccine design, where you want to get a good cytotoxic T ."

A subset of DCs found within the murine skin plays a particularly prominent role in this process, but equivalent cells have not yet been identified in humans. DC subsets that look similar but function differently from each other can be distinguished via distinct combinations of that act as a 'name tag'. Through careful analysis, Ginhoux and his co-workers isolated and characterized a population of skin cells that express high levels of the protein CD141, which effectively tags this human DC subset.

The researchers determined that these skin DCs indeed possess the needed for cross-presentation. Ginhoux believes they should offer a useful tool for training the immune system to fight disease. "Now that we know that this population exists, our aim is to understand how to mobilize it, activate it and to target it with adjuvants and antigens relevant for vaccination," he says. In the process of characterizing these cells, the researchers also succeeded in profiling the expression of various 'name tag' proteins. From these profiles, they can draw parallels between equivalent DC subsets in mice and humans, building a valuable informational resource for future research. "This will allow clear inferences to be made between mice and humans," says Ginhoux.

Explore further: Scientists discover dendritic cells key to activating human immune responses

More information: Haniffa, M., Shin, A., Bigley, V., McGovern, N., Teo, P. et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37, 60–73 (2012). dx.doi.org/10.1016/j.immuni.2012.04.012

Related Stories

Scientists discover dendritic cells key to activating human immune responses

July 16, 2012
Scientists at A*STAR’s Singapore Immunology Network (SIgN), in collaboration with Newcastle University, UK, the Singapore Institute of Clinical Sciences and clinicians from multiple hospitals in Singapore, have identified ...

Langerhans cells migrate to their final destination in multiple waves at different stages of embryonic development

August 29, 2012
As our primary interface with the outside world, the skin needs to be able to protect itself against infectious threats. Specialized cells known as Langerhans cells (LCs) (see image) are an essential component of this defense, ...

Discovery of new white blood cell reveals target for better vaccine design

July 27, 2012
Researchers in Newcastle and Singapore have identified a new type of white blood cell which activates a killing immune response to an external source – providing a new potential target for vaccines for conditions such ...

Jump-starting cheaper cancer vaccines

September 26, 2012
Dendritic cells (DCs)—workhorses of the immune system—derived from human embryonic stem cells (hESCs) may provide an economical way of generating off-the-shelf therapeutic vaccines against cancers, according to research ...

Mystery to the origin of long-lived, skin-deep immune cells uncovered

June 7, 2012
Scientists at A*STAR’s Singapore Immunology Network (SIgN) uncovered the origin of a group of skin-deep immune cells that act as the first line of defence against harmful germs and skin infections. SIgN scientists discovered ...

Recommended for you

Researchers create skeletal muscle from stem cells

December 18, 2017
UCLA scientists have developed a new strategy to efficiently isolate, mature and transplant skeletal muscle cells created from human pluripotent stem cells, which can produce all cell types of the body. The findings are a ...

Fruit fly breakthrough may help human blindness research

December 18, 2017
For decades, scientists have known that blue light will make fruit flies go blind, but it wasn't clear why. Now, a Purdue University study has found how this light kills cells in the flies' eyes, and that could prove a useful ...

Tiny bilirubin-filled capsules could improve survival of transplanted pancreatic cells

December 18, 2017
By encapsulating bilirubin within tiny nanoparticles, researchers from North Carolina State University and the Ohio State University have improved the survival rates of pancreatic islet cells in vitro in a low-oxygen environment. ...

Tracking effects of a food preservative on the gut microbiome

December 18, 2017
Antimicrobial compounds added to preserve food during storage are believed to be benign and non-toxic to the consumer, but there is "a critical scientific gap in understanding the potential interactions" they may have with ...

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.