Recently uncovered human counterparts to a subset of mouse immune cells may enable better vaccination strategies

October 24, 2012
Electron micrograph of cross-presenting human skin DCs, isolated based in part on their expression of high levels of the cell-surface marker CD141. Credit: 2012 A*STAR Singapore Immunology Network

Mice have made an immeasurable contribution to medicine and our overall understanding of human disease. This animal model is not without its limitations, however, and scientists are continually learning about important ways in which mouse and human biology differ.

Both human and murine immune systems, for example, function in a similar fashion, but individual subtypes of often display characteristics unlike those of their mouse counterparts. These differences make it difficult to directly translate mouse data into medically meaningful results. By identifying parallels between a crucial class of immune cells in mice and humans, a team led by Florent Ginhoux of the A*STAR Singapore Immunology Network has obtained valuable insights that should accelerate this translation.

Cells known as (DCs) are at the immune frontline, capturing pathogen-derived antigens and training other immune cells known as to recognize them via a process called 'cross-presentation'. "This is very important, as it is the only way DCs can present tumor-derived antigens or viral antigens without being a tumor cell or directly infected by a virus," explains Ginhoux. "And, it has important implications for vaccine design, where you want to get a good cytotoxic T ."

A subset of DCs found within the murine skin plays a particularly prominent role in this process, but equivalent cells have not yet been identified in humans. DC subsets that look similar but function differently from each other can be distinguished via distinct combinations of that act as a 'name tag'. Through careful analysis, Ginhoux and his co-workers isolated and characterized a population of skin cells that express high levels of the protein CD141, which effectively tags this human DC subset.

The researchers determined that these skin DCs indeed possess the needed for cross-presentation. Ginhoux believes they should offer a useful tool for training the immune system to fight disease. "Now that we know that this population exists, our aim is to understand how to mobilize it, activate it and to target it with adjuvants and antigens relevant for vaccination," he says. In the process of characterizing these cells, the researchers also succeeded in profiling the expression of various 'name tag' proteins. From these profiles, they can draw parallels between equivalent DC subsets in mice and humans, building a valuable informational resource for future research. "This will allow clear inferences to be made between mice and humans," says Ginhoux.

Explore further: Scientists discover dendritic cells key to activating human immune responses

More information: Haniffa, M., Shin, A., Bigley, V., McGovern, N., Teo, P. et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37, 60–73 (2012). dx.doi.org/10.1016/j.immuni.2012.04.012

Related Stories

Scientists discover dendritic cells key to activating human immune responses

July 16, 2012
Scientists at A*STAR’s Singapore Immunology Network (SIgN), in collaboration with Newcastle University, UK, the Singapore Institute of Clinical Sciences and clinicians from multiple hospitals in Singapore, have identified ...

Langerhans cells migrate to their final destination in multiple waves at different stages of embryonic development

August 29, 2012
As our primary interface with the outside world, the skin needs to be able to protect itself against infectious threats. Specialized cells known as Langerhans cells (LCs) (see image) are an essential component of this defense, ...

Discovery of new white blood cell reveals target for better vaccine design

July 27, 2012
Researchers in Newcastle and Singapore have identified a new type of white blood cell which activates a killing immune response to an external source – providing a new potential target for vaccines for conditions such ...

Jump-starting cheaper cancer vaccines

September 26, 2012
Dendritic cells (DCs)—workhorses of the immune system—derived from human embryonic stem cells (hESCs) may provide an economical way of generating off-the-shelf therapeutic vaccines against cancers, according to research ...

Mystery to the origin of long-lived, skin-deep immune cells uncovered

June 7, 2012
Scientists at A*STAR’s Singapore Immunology Network (SIgN) uncovered the origin of a group of skin-deep immune cells that act as the first line of defence against harmful germs and skin infections. SIgN scientists discovered ...

Recommended for you

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.