3-year study finds significant differences in white matter processes related to children's reading development

October 9, 2012 by Bob Yirka report
brain

(Medical Xpress)—Researchers from Stanford and Israel's Bar Ilan University have found that differences in the rates at which white matter develops in children's brains may, as they write in their paper published in the Proceedings of the National Academy of Sciences, account for differences in their ability to learn to read.

is composed of largely myelinated nerve fibers through which neural messages are passed among areas of . According to the study's authors, previous research has established that "white matter tissue properties are highly correlated with reading proficiency." The brain process of myelination protects neural fibers, while pruning eliminates those fibers deemed extraneous. The rate and timing of both processes are considered in the current study as they relate to the children's . Differences in growth patterns in the brain can have a significant impact on the ability to learn to read, the researchers say, if such learning occurs at a less-than-optimal time.

To gain a better understanding of why there are differences in reading skill levels between young students when other environmental factors remain the same, the researchers enlisted the help of 55 test volunteer children between the ages of 7 and 12. Thirty-nine of the subjects allowed (MRI) to be completed throughout the three-year longitudinal study. Based upon this imaging, researchers discovered that some children rapidly developed white matter at an early age, whereas others had very little white matter early in life but experienced rapid growth later. They also found that there were differences in when pruning occurred.

What really stood out, however, was that the children who started out with greater amounts of white matter, but didn't experience much growth during the period when they were learning to read, were also the children who experienced the greatest difficulty grasping the skill. MRI results also revealed increased levels of neural pruning in this group during that same period, suggesting that newly developed reading skills weren't retained. Conversely, those children who rapidly developed white-matter during the time when they were learning to read became the best readers; and, this group's MRI results revealed minimal pruning during the same period.

Based upon the results of this study and the striking imaging differences between the two groups, researchers suggest that it might be possible to use brain scans as a means to determine the optimal time for teaching to read, thereby increasing their chances of success.

Explore further: White matter structural changes ID'd in children with T1DM

More information: Development of white matter and reading skills, PNAS, Published online before print October 8, 2012, doi: 10.1073/pnas.1206792109

Abstract
White matter tissue properties are highly correlated with reading proficiency; we would like to have a model that relates the dynamics of an individual's white matter development to their acquisition of skilled reading. The development of cerebral white matter involves multiple biological processes, and the balance between these processes differs between individuals. Cross-sectional measures of white matter mask the interplay between these processes and their connection to an individual's cognitive development. Hence, we performed a longitudinal study to measure white-matter development (diffusion-weighted imaging) and reading development (behavioral testing) in individual children (age 7–15 y). The pattern of white-matter development differed significantly among children. In the left arcuate and left inferior longitudinal fasciculus, children with above-average reading skills initially had low fractional anisotropy (FA) that increased over the 3-y period, whereas children with below-average reading skills had higher initial FA that declined over time. We describe a dual-process model of white matter development comprising biological processes with opposing effects on FA, such as axonal myelination and pruning, to explain the pattern of results.

Related Stories

White matter structural changes ID'd in children with T1DM

September 17, 2012
(HealthDay)—Children with type 1 diabetes have significant structural differences in the white matter of their brain compared to healthy children, which correlates with hemoglobin A1c (HbA1c) values, according to a study ...

Variation in brain development seen in infants with autism

February 22, 2012
Patterns of brain development in the first two years of life are distinct in children who are later diagnosed with autism spectrum disorders (ASDs), according to researchers in a network funded by the National Institutes ...

Recommended for you

Mechanism explains how seizures may lead to memory loss

October 16, 2017
Although it's been clear that seizures are linked to memory loss and other cognitive deficits in patients with Alzheimer's disease, how this happens has been puzzling. In a study published in the journal Nature Medicine, ...

Study shows people find well-being more so from special places than from mementoes

October 16, 2017
(Medical Xpress)—A team of researchers at the University of Surrey has found that people experience a feeling of well-being when thinking about or visiting a place that holds special meaning to them. They also found that ...

New study describes how dopamine tells you it isn't worth the wait

October 16, 2017
How do we know if it was worth the wait in line to get a meal at the new restaurant in town? To do this our brain must be able to signal how good the meal tastes and associate this feeling with the restaurant. This is done ...

Neuroscientists identify genetic changes in microglia in a mouse model of neurodegeneration and Alzheimer's disease

October 13, 2017
Microglia, immune cells that act as the central nervous system's damage sensors, have recently been implicated in Alzheimer's disease.

Restless legs syndrome study identifies 13 new genetic risk variants

October 13, 2017
A new study into the genetics underlying restless legs syndrome has identified 13 previously-unknown genetic risk variants, while helping inform potential new treatment options for the condition.

Blueberries may improve attention in children following double-blind trial

October 13, 2017
Primary school children could show better attention by consuming flavonoid-rich blueberries, following a study conducted by the University of Reading.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.