Research advances understanding of autism

November 7, 2012

(Medical Xpress)—Research by scientists from the Centre for Brain Research at the University of Auckland has uncovered new information about the mechanisms underlying autism spectrum disorders (ASDs), to be published in the next issue of the prestigious Journal of Neuroscience.

Principal investigator, Dr Johanna Montgomery, says the findings are highly significant: "We're moving beyond simply what happens in ASDs and starting to understand how it happens."

The behavioural manifestations of ASDs are well documented and include impaired communication and socialisation, , and repetitive or stereotyped behaviours. These behavioural characteristics are in turn associated with a wide range of gene mutations. Many of these mutated genes are responsible for the production of specific proteins in the neurons of the brain.
Dr Montgomery and her team took a close look at parts of these neurons – the synapses, which are the structures that enable to communicate with each other. This cell to cell communication is vital for a healthy brain, and underlies how we learn, remember, move and sense.

In a complex cascade of chemical and electrical signalling, information is transmitted from one neuron to another at the . This process is mediated by several families of protein, some of which form the of the synapse on the 'listening' side. Dr Montgomery's team chose to investigate one of these proteins, known as Shank3, because it has been identified as vital to the between two neurons, and because it is known to be mutated in ASDs.

Usually, the more two neurons "talk" to one another, the larger and more efficient the synapse becomes - in the same way that exercising your muscles helps make them bigger and stronger. However, Dr Montgomery and her team found that in neurons carrying ASD mutations in the Shank3 protein, not only was cell to weaker than usual, but that repetition did not strengthen or stabilise the synaptic connection.

Further investigation revealed that Shank3, when healthy, forms complexes with two other types of protein known as neurexin and neuroligin (also frequently mutated in ASDs). These complexes act to physically bridge the synaptic gap and can transmit information from the receiving or "listening" side of the synapse to the transmitting side. This "backward" flow of information completes a feedback loop between the two neurons which is likely to be responsible for the strengthening of the connection.

Dr Montgomery and her team theorise that the Shank3/neurexin/neuroligin complex is critical to the ability of neurons to effectively transfer information across the synapse so as to ensure the correct messages get through at the appropriate strength. This complex of proteins helps both sides of the synapse to co-ordinate to improve the efficacy of messaging, and this in turn increases the likelihood of successful transmission in future. Therefore, mutations are preventing this efficient transfer of information between neurons, which likely underlies the behavioural and cognitive changes that occur in people with ASDs.

Intriguingly, the opposite occurs when neurons express multiple copies of the Shank3 gene, as is known to occur in Aspergers Syndrome. In this case the communication between gets much stronger, increasing their efficacy and providing a possible mechanism for the enhanced cognitive function that is associated with this syndrome.

"This is really exciting stuff", says Dr Montgomery. "Now we have identified the problems that these mutated proteins cause, we have a focus for developing treatments to offset the synaptic deficits that result. That's the next step."

Autism NZ Chief Executive Alison Molloy says, "It is great that this research is happening in New Zealand. For those on the autism spectrum, and their families, it means we can look forward to a time when the characteristics of Autism can be managed, making living and communicating considerably less stressful for them."

Explore further: Further support for a role of synaptic proteins in autism spectrum disorders

Related Stories

Recommended for you

Autism biomarker seen as boon for new treatments

January 11, 2017

Researchers at the UCLA Center for Autism Research and Treatment have identified a signature brain-wave pattern for children with autism spectrum disorder related to a genetic condition known as Dup15q syndrome. The research ...

Lab confirms vitamin D link to autism traits

December 14, 2016

Researchers at The University of Queensland's Queensland Brain Institute have found a link between vitamin D deficiency in pregnancy and increased autism traits.

Neuromotor problems at the core of autism, study says

December 12, 2016

Rutgers neuroscientists have established that problems controlling bodily movements are at the core of autism spectrum disorders and that the use of psychotropic medications to treat autism in children often makes such neuromotor ...

Mutations in life's 'essential genes' tied to autism

December 12, 2016

Genes known to be essential to life—the ones humans need to survive and thrive in the womb—also play a critical role in the development of autism spectrum disorder (ASD), suggests a new study from Penn Medicine geneticists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.