Cambridge software improves quality of sound for hearing aid users

November 8, 2012, Cambridge Enteprise University of Cambridge

A new software product developed by researchers at the University of Cambridge could greatly improve sound perception for users of hearing aids.

The software prescribes the amount of amplification of high-frequency sounds required to restore the audibility of such sounds. This increases the frequency range of sound that individuals with are able to detect, improving , sound localisation and the ability to hear certain musical sounds, when compared with current methods. Results of an evaluation of the software were published recently in the journal Ear and Hearing.

Approximately ten percent of the UK population has hearing loss great enough to cause them problems in everyday life. As hearing loss usually increases with age, the proportion of individuals with hearing loss will increase rapidly as the population ages in the coming decades.

The main treatment for hearing loss is hearing aids, which amplify and sound for the wearer in a frequency and level-dependent manner. In order for users to get the full benefits of a hearing aid, the device must be adjusted according to the wearer's pattern of hearing loss. The concept is similar to adjusting glasses for ; however even a properly adjusted hearing aid will not completely restore hearing to normal.

Hearing loss typically occurs at , and individuals with hearing loss can only hear comfortably within a small intensity range at those frequencies. While the threshold for detecting a certain sound may be higher for someone with hearing loss, the level at which sound is uncomfortably loud is often similar for individuals with hearing loss and those with normal hearing. To deal with this problem, hearing aids split sound into large numbers of frequency channels, or bands. Within each band, weak sounds are amplified while strong sounds are not. This is called multi-channel automatic gain control.

Researchers at the University of Cambridge have developed CAM2, a new method of fitting automatic gain control based on the audiogram of the user. An audiogram shows an individual's threshold for detecting sound at different frequencies.

"Until recently, hearing aids only provided amplification for frequencies up to four or five kHz, whereas a person with normal hearing can hear for frequencies up to 15 or 20 kHz," said Professor Brian Moore of the Department of Psychology, who led the development of CAM2. "Manufacturers have recently released that can amplify frequencies up to 8 or 10 kHz, but existing fitting methods do not give any recommendations for those higher frequencies." The CAM2 method, however, extends the fitting range up to 10 kHz.

Higher frequencies help distinguish sounds such as "sh", "ch" and "f". In challenging listening situations, such as in a room where several people are speaking at once, the higher frequencies make it much easier to understand the person you want to listen to. The higher frequencies can also improve sound localisation, making it easier to identify where a particular sound is coming from.

A recent study compared the CAM2 method with NAL-NL2, which is a fitting method used by the NHS and many other health organisations worldwide. Judgments of overall sound quality were obtained for male and female speech in both quiet and noisy environments, and for four different types of music (classical, jazz, a man singing and percussion). Most participants in the study showed a preference for CAM2, both for overall quality and for the clarity of speech in a noisy situation. Further studies are planned over the coming months, in order to test more subjects with a wider range of hearing loss.

Explore further: Sound, vision & hearing loss

Related Stories

Sound, vision & hearing loss

June 24, 2011
(Medical Xpress) -- The mechanisms used by the brain to distinguish contrasting sounds may be similar to those used to visually pick out a face in the crowd.

Novel genetic loci identified for high-frequency hearing loss

April 26, 2012
The genetics responsible for frequency-specific hearing loss have remained elusive until recently, when genetic loci were found that affected high-frequency hearing. Now, a study published today in the open access journal ...

A hearing aid you install yourself

May 17, 2011
Melbourne researchers have invented a small, smart, self-managed hearing aid that outperforms most conventional hearing aids for less than half the price.

Know the types of hearing loss to find the right treatment

May 13, 2011
The solution for hearing loss isn’t just to turn up the volume on the TV—and the treatments available largely depend on the type of hearing loss a patient is experiencing.

Recommended for you

Best of Last Year—The top Medical Xpress articles of 2017

December 20, 2017
It was a good year for medical research as a team at the German center for Neurodegenerative Diseases, Magdeburg, found that dancing can reverse the signs of aging in the brain. Any exercise helps, the team found, but dancing ...

Pickled in 'cognac', Chopin's heart gives up its secrets

November 26, 2017
The heart of Frederic Chopin, among the world's most cherished musical virtuosos, may finally have given up the cause of his untimely death.

Sugar industry withheld evidence of sucrose's health effects nearly 50 years ago

November 21, 2017
A U.S. sugar industry trade group appears to have pulled the plug on a study that was producing animal evidence linking sucrose to disease nearly 50 years ago, researchers argue in a paper publishing on November 21 in the ...

Female researchers pay more attention to sex and gender in medicine

November 7, 2017
When women participate in a medical research paper, that research is more likely to take into account the differences between the way men and women react to diseases and treatments, according to a new study by Stanford researchers.

Drug therapy from lethal bacteria could reduce kidney transplant rejection

August 3, 2017
An experimental treatment derived from a potentially deadly microorganism may provide lifesaving help for kidney transplant patients, according to an international study led by investigators at Cedars-Sinai.

Exploring the potential of human echolocation

June 25, 2017
People who are visually impaired will often use a cane to feel out their surroundings. With training and practice, people can learn to use the pitch, loudness and timbre of echoes from the cane or other sounds to navigate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.