Cancer therapy: Nanokey opens tumors to attack

November 14, 2012, Ludwig Maximilian University of Munich

There are plenty of effective anticancer agents around. The problem is that, very often, they cannot gain access to all the cells in solid tumors. A new gene delivery vehicle may provide a way of making tracks to the heart of the target.

Many types of form a compact mass, like the phalanx formation of Greek antiquity. And although many drugs are known to be toxic to , they are often unable to percolate into the inner recesses of the tumor. Upon intravenous administration, for instance, may only be able to penetrate the outermost layers of a solid tumor. A team led by LMU pharmacologist Dr Manfred Ogris has now developed a new type of gene , which is designed to open up a route through the vascular network that supplies the tumor so that drugs can reach their target.

Large tumors need a local blood supply for continued growth, and are capable of inducing the formation of new vessels. The resulting is more permeable than normal vessels, which should facilitate the delivery of cytotoxins. However, the lymphatic system does not work optimally in tumors, and back-pressure associated with the build-up of lymph limits the diffusion of drugs. As it happens, the cytokine α (TNFα), which can kill tumor cells directly, is able to increase blood vessel permeability as part of its pro-inflammatory function.

Shielding the organism from the drug

TNFα is already being used in combination with chemotherapeutic agents for the treatment of muscle tumors in arms and legs, but in this case, the local vasculature must be cut off surgically. "Unfortunately, therapeutically effective amounts of TNFα cannot be administered systemically, because this would lead to activation of, and damage to, all the vessels in the organism," says Ogris. "For this reason, it is not possible to use this approach on tumors in or against dispersed metastases."

A new strategy employing gene therapy could provide a solution to this problem. The idea is to deliver the gene for TNFα directly and specifically to the tumor cells. If this worked, the tumor cells themselves could produce and secrete the cytokine, ensuring that its local concentration becomes sufficiently high to permeabilize the blood vessels only in the immediate vicinity of the tumor. "We first designed a version of the TNFα gene that allows for the production of large amounts of the protein," Dr. Baowei Su, first author on the study, explains.

Shielding the drug from the organism

In collaboration with researchers at the Technische Universität München and the Helmholtz Center Munich, the LMU team constructed a form of the gene which, in contrast to the normal version, is unlikely to induce non-specific inflammation. The plasmid was then incorporated into special nanoparticles, which not only protect the DNA from inactivation during its journey through the bloodstream, but also allow it to be targeted to the tumor. Experiments carried out on cell cultures confirmed that tumor cells treated with these particles synthesize large amounts of TNFα.

Treatment with the loaded nanoparticles alone, however, had only a moderate effect on , but when they were administered in combination with the DNA-intercalating drug doxorubicin, the impact on tumor cell growth was markedly enhanced. Under the trade name Doxil, doxorubicin, which inhibits DNA replication, is available in a liposome-encapsulated form. Incorporating the drug into liposomes of 100 nm in diameter reduces side-effects and increases its half-life in the circulation, making it more effective than unencapsulated formulations.

No evidence for drug resistance

When mice with neuroblastoma, or mice that had received a xenograft of a human liver tumor, were first exposed to nanoparticles carrying the TNFα gene and subsequently treated with Doxil the researchers observed, in real time, that the drug became concentrated in the tumor tissue. Indeed, in some cases, the combination was sufficient to bring tumor growth to a standstill, even in animals that had already undergone three cycles of treatment. This finding suggests that drug resistance, which often limits the efficacy of chemotherapy, does not develop in this context.

In addition to eliminating the primary tumor, a successful therapy must be able to kill metastatic tumors in other tissues. When the researchers looked at mice with neuroblastoma, or mice carrying implanted human colon tumors that had metastasized to the liver, they found that the new treatment strategy also significantly reduced the growth of metastases. "TNFα might also be useful in combination with other agents and other treatment regimens," says Ogris. "We now plan to optimize our system, and hope that we can soon begin to plan preclinical tests of the new approach." (suwe)

Explore further: How immune cells destroy cancer cells: Researchers elucidate mechanism

More information: Systemic TNFα Gene Therapy Synergizes With Liposomal Doxorubicine in the Treatment of Metastatic Cancer, Baowei Su, Arzu Cengizeroglu, Katarina Farkasova, Joana R. Viola, Martina Anton, Joachim W. Ellwart, Rudolf Haase, Ernst Wagner, Manfred Ogris, Molecular Therapy, 2012. doi: 10.1038/mt.2012.229

Related Stories

How immune cells destroy cancer cells: Researchers elucidate mechanism

January 17, 2012
In the treatment of large tumors, how effective is adoptive T cell therapy in comparison to drug-based cancer treatment? To answer this question, Dr. Kathleen Anders and Professor Thomas Blankenstein of the Max Delbrück ...

Neurotransmitter might improve cancer treatment: study

December 5, 2011
Doses of a neurotransmitter might offer a way to boost the effectiveness of anticancer drugs and radiation therapy, according to a new study led by researchers at the Ohio State University Comprehensive Cancer Center – ...

Normalizing tumor blood vessels improves delivery of only the smallest nanomedicines

April 9, 2012
Combining two strategies designed to improve the results of cancer treatment – antiangiogenesis drugs and nanomedicines – may only be successful if the smallest nanomedicines are used. A new study from Massachusetts ...

Live imaging shows response to cancer drugs can be boosted by altering tumor microenvironment

April 16, 2012
It should be possible to significantly improve the response of common cancers to existing "classical" chemotherapy drugs, say scientists at Cold Spring Harbor Laboratory (CSHL), by introducing agents that alter the interaction ...

Recommended for you

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Dietary fat, changes in fat metabolism may promote prostate cancer metastasis

January 15, 2018
Prostate tumors tend to be what scientists call "indolent" - so slow-growing and self-contained that many affected men die with prostate cancer, not of it. But for the percentage of men whose prostate tumors metastasize, ...

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.