Musical duets lock brains as well as rhythms

November 29, 2012
Time-frequency diagrams of the grand average of the phase locking index, averaged across frontal electrodes for leaders and followers during preparatory tempo setting and around coordinated play onsets. Credit: Max Plank Institute, Sänger et al.

Researchers from the Max Planck Institute for Human Development in Berlin have shown that synchronization emerges between brains when making music together, and even when musicians play different voices. In a study published November 29th in Frontiers in Neuroscience, Johanna Sänger and her team used electrodes to record the brain waves of guitarists while they played different voices of the same duet. The results point to brain synchronicity that cannot be explained away by similitudes in external stimulation but can be attributed to a more profound interpersonal coordination.

Scientists working with Ulman Lindenberger at the Max Planck Institute in Berlin already discovered synchronous between musicians playing the same piece in 2009. The current study goes one step further by examining the brain activity of guitar players performing a piece of music with two different parts. Their aim was to find out whether musicians' brains would synchronize if the two guitarists were not playing exactly the same notes, but instead played different voices of the same song.

To test their hypothesis, the psychologists arranged 32 experienced in duet pairs, and recorded electrical activity in different brain regions of each musician. They were then asked to play a sequence from the "Sonata in G Major" by Christian Gottlieb Scheidler a total of 60 times, and the duet partners were given slightly different tasks: each musician had to play a different voice, and one of the two was responsible for ensuring that they started at the same time and held the same tempo. Thus, one person took the lead and the other followed.

The duet's brain activities showed coordinated brain oscillations, even when playing different voices of the same duet. Called phase coherence, this suggests a direct for interpersonal coordination.

"When people coordinate their own actions, small networks between brain regions are formed. But we also observed similar network properties between the brains of the individual players, especially when mutual coordination is very important; for example at the joint onset of a ," says Johanna Sänger. The difference between leader and follower was also reflected in the results of the measurement of captured by electrodes: "In the player taking the lead, the internal synchronization of an individual's brain waves was stronger and, importantly, was present already before the duet started to play," says Johanna Sänger. "This could be a reflection of the leading player's decision to begin playing at a certain moment in time," she added.

The current data indicate that synchronization between individuals occurs in associated with social cognition and music production. And such interbrain networks are expected to occur not only while performing music. "We think that different people's also synchronise when people mutually coordinate their actions in other ways, such as during sport, or when they communicate with one another," Sänger says.

Explore further: Neuroscientist David Sulzer turns brain waves into music

More information: Johanna Sänger, Viktor Müller and Ulman Lindenberger, Intra- and interbrain synchronization and network properties when playing guitar in duets. Frontiers in Human Neuroscience, 2012, doi: 10.3389/fnhum.2012.00312

Related Stories

Neuroscientist David Sulzer turns brain waves into music

August 28, 2012
Columbia neurophysiologist David Sulzer took his first piano lessons at the age of 11 and was playing his violin and guitar in bars by age 15. Later he gained a national following as a founder of the Soldier String Quartet ...

Remixed brain waves reveal soundtrack of the human brain

November 14, 2012
Scientists have combined and translated two kinds of brain wave recordings into music, transforming one recording (EEG) to create the pitch and duration of a note, and the other (fMRI) to control the intensity of the music. ...

Playing music alters the processing of multiple sensory stimuli in the brain

November 24, 2011
(Medical Xpress) -- Over the years pianists develop a particularly acute sense of the temporal correlation between the movements of the piano keys and the sound of the notes played. However, they are no better than non-musicians ...

Short-term memory is based on synchronized brain oscillations

January 31, 2012
Scientists have now discovered how different brain regions cooperate during short-term memory.

Recommended for you

'Residual echo' of ancient humans in scans may hold clues to mental disorders

July 26, 2017
Researchers at the National Institute of Mental Health (NIMH) have produced the first direct evidence that parts of our brains implicated in mental disorders may be shaped by a "residual echo" from our ancient past. The more ...

Laser used to reawaken lost memories in mice with Alzheimer's disease

July 26, 2017
(Medical Xpress)—A team of researchers at Columbia University has found that applying a laser to the part of a mouse brain used for memory storage caused the mice to recall memories lost due to a mouse version of Alzheimer's ...

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Tausch
not rated yet Nov 29, 2012
Kudos.
Twins performing the same task at separate times and places will show the same brain wave oscillations as when performing the same task together?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.