Researchers say effective immunotherapy for melanoma hinges on blocking suppressive factors

December 11, 2012

(Medical Xpress)—Researchers at the Moffitt Cancer Center have found that delayed tumor growth and enhanced survival of mice bearing melanoma were possible by blocking the reconstitution of myeloid-derived suppressor cells and Tregs (suppressors of anti-tumor activity) after total body irradiation had eliminated them. Blocking myeloid-derived suppressor cells and regulatory T-cell reconstitution improved adoptive T-cell therapy, an immunotherapy designed to suppress tumor activity.

The study appears in the December issue of The Journal of Immunology.

"Melanoma is a leading cause of ," said Shari Pilon-Thomas, Ph.D., assistant member of the Immunology Program at Moffitt. "With few nonsurgical options for treating melanoma, immunotherapy, which focuses on the induction of immunity against , is a promising approach. However, a major hurdle in developing effective immunotherapies is tumor-induced suppression that can limit the effectiveness of tumor-specific T-cells used in immunotherapy."

Chemotherapy or radiation can induce lymphopenia, the condition of having an abnormally low level of . This condition is optimal for adoptive T-cell therapeutic strategies. However, after the induction of lymphopenia, suppressor populations that favor tumor progression begin reconstitution, including (Tregs) and myeloid derived (MDSC). According to the researchers, tumor-induced suppression can stem from quickly reconstituted Tregs and MDSC.

This knowledge led to their research question, whether blocking the reconstitution of suppressor populations - such as Tregs and myeloid derived suppressor cells - could lead to better immunotherapy in mice bearing melanoma. Mice were treated with docetaxel, a chemotherapeutic drug that targets MDSC, followed by adoptive T cell therapy. In brief, the study demonstrated that when myeloid-derived suppressor cells and Treg reconstitution are blocked, immunotherapy with adoptive T cell transfer is more effective.

"It was important to understand the role of these suppressor populations after the induction of lymphopenia so that we can design more effective immunotherapeutic treatments for melanoma aimed at achieving complete tumor regression," concluded Dr. Pilon-Thomas.

Explore further: Immune cells link pregnancy and tumor spread

More information: www.jimmunol.org/content/189/11/5147.full.pdf

Related Stories

Immune cells link pregnancy and tumor spread

June 6, 2011
Individuals with cancer often do not die as a result of their initial tumor but as a result of tumors at distant sites that are derived from the initial tumor. Pregnancy is a condition that seems to be permissive for tumor ...

Study finds potential key to immune suppression in cancer

January 19, 2012
In a study investigating immune response in cancer, researchers from Moffitt Cancer Center in Tampa, Fla., and the University of South Florida have found that interaction between the immune system's antigen-specific CD4 T ...

Using Viagra to combat malignant melanoma

November 8, 2011
Many tumors cause chronic inflammations, which, in their turn, suppress specific attacks against the tumor by the immune system. Scientists at the German Cancer Research Center and Medical Faculty Mannheim at Heidelberg University ...

Researchers study 'ACT TIL' approach to treating metastatic melanoma

October 17, 2012
Researchers at Moffitt Cancer Center have carried out a clinical trial in which patients with metastatic melanoma were given chemotherapy and an immunotherapy of adoptive cell transfer (ACT) with tumor infiltrating lymphocytes ...

Recommended for you

Australian researchers in peanut allergy breakthrough

August 17, 2017
Australian researchers have reported a major breakthrough in the relief of deadly peanut allergy with the discovery of a long-lasting treatment they say offers hope that a cure will soon be possible.

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Study identifies a new way to prevent a deadly fungal infection spreading to the brain

August 16, 2017
Research led by the University of Birmingham has discovered a way to stop a deadly fungus from 'hijacking' the body's immune system and spreading to the brain.

Biophysics explains how immune cells kill bacteria

August 16, 2017
(Tokyo, August 16) A new data analysis technique, moving subtrajectory analysis, designed by researchers at Tokyo Institute of Technology, defines the dynamics and kinetics of key molecules in the immune response to an infection. ...

How a nutrient, glutamine, can control gene programs in cells

August 15, 2017
The 200 different types of cells in the body all start with the same DNA genome. To differentiate into families of bone cells, muscle cells, blood cells, neurons and the rest, differing gene programs have to be turned on ...

Scientists identify gene that controls immune response to chronic viral infections

August 15, 2017
For nearly 20 years, Tatyana Golovkina, PhD, a microbiologist, geneticist and immunologist at the University of Chicago, has been working on a particularly thorny problem: Why are some people and animals able to fend off ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.