A study of fruit fly genes reveals how molecules cooperate to induce tumor formation

December 5, 2012, Agency for Science, Technology and Research (A*STAR), Singapore
Cancer biology: Modeling cancer on the fly
Genes that cooperate with known cancer 'drivers' to promote tumor formation in the fruit fly are pointing the way to equivalents in humans. Credit: iStockphoto/Thinkstock

Cancer biologists have known for decades that even the most potent cancer-causing genes do not act alone. Yet, identifying which combinations of genetic changes can cause a tumor to form and disease to progress remains a challenge. "The hope is that by understanding these [combinations], it will be possible to design therapeutic strategies tailored to the genetic changes in different cancers," says Stephen Cohen of the A*STAR Institute of Molecular and Cell Biology (IMCB) and the National University of Singapore.

Sequencing the genomes of tumors from cancer patients is one approach to identifying cancer-causing mutations. The number of mutations can be so large, however, that researchers are left wondering which mutations are cancer 'drivers' and which are innocuous 'passengers', Cohen notes.

Taking an alternative approach, Cohen and his team in Singapore succeeded in identifying cancer-causing genes in the fruit fly, Drosophila melanogaster, based on function. The team set out to find genes that cooperate with known cancer drivers that promote tumor formation.

They began with a gene linked to breast and lung cancer, epidermal growth factor receptor (EGFR). Team member Hector Herranz developed a fly model in which activation of EGFR caused tissue overgrowth, but these overgrowths did not progress to form tumors. He then screened for secondary genetic changes that would enhance the ability of EGFR to produce tumors. Herranz found that co-expression of a microRNA called bantam with EGFR produced tumors that spread through the body and killed the fly.

As regulatory genes that produce small , microRNAs typically reduce the expression of other genes, decreasing their ability to produce proteins. The team therefore searched for a target of the microRNA whose absence increased the tumor-forming potential of EGFR. Team member Xin Hong was able to locate it: a gene known as Socs36E. In the team's fly model, Socs36E behaved like a tumor suppressor: the deletion of Socs36E enhanced EGFR-induced .

Hong then identified the corresponding human gene as SOCS5. He found that it also behaved as a ; SOCS5 cooperated with EGFR in an experimental model of human cancer.

Studies on human SOCS5 are ongoing, Cohen explains, but early indications point to a breast cancer link. Further work by the team will determine whether SOCS5 could be a useful biomarker.

Explore further: Fruit flies light the way to pinpoint genetic changes that spell cancer

More information: Herranz, H., Hong, X., Hung, N. T., Voorhoeve, P. M. & Cohen, S. M. Oncogenic cooperation between SOCS family proteins and EGFR identified using a Drosophila epithelial transformation model. Genes & Development 26, 1602–1611 (2012). genesdev.cshlp.org/content/26/14/1602

Related Stories

Fruit flies light the way to pinpoint genetic changes that spell cancer

July 30, 2012
By studying fruit flies, scientists at A*STAR’s Institute of Molecular and Cell Biology (IMCB) have successfully devised a fast and cost-saving way to uncover genetic changes that have a higher potential to cause cancer. ...

Researchers identify gene involved in lung tumor growth

November 29, 2012
Lung cancer researchers at St. Joseph's Hospital and Medical Center in Phoenix, Ariz., in collaboration with researchers at the Translational Genomics Research Institute and other institutions, have identified a gene that ...

The right combination: Overcoming drug resistance in cancer

June 1, 2012
Overactive epidermal growth factor receptor (EGFR) signaling has been linked to the development of cancer. Several drug therapies have been developed to treat these EGFR-associated cancers; however, many patients have developed ...

MicroRNAs link the pathways that control growth during animal development and in disease

June 20, 2012
Cellular mechanisms that enable healthy growth can spiral out of control and give rise to cancer. For this reason, signal transduction pathways that underlie cell growth are tightly regulated, with multiple checkpoints and ...

The link between TB and a gene mutation that causes lung cancer

January 18, 2012
Tuberculosis (TB) has been suspected to increase a person's risk of lung cancer because the pulmonary inflammation and fibrosis can induce genetic damage. However, direct evidence of specific genetic changes and the disease ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.