A new genetic fingerprint lives in your belly

December 5, 2012, Washington University School of Medicine
A new study suggests that the collection of microbial DNA in the gut is just as individualized as our own human DNA. The research, by scientists at Washington University School of Medicine in St. Louis and the European Molecular Biology Laboratory in Heidelberg, Germany, is published online Dec. 5 in Nature. Credit: U.S. Department of Agriculture/Washington University

Our bodies contain far more microbial genes than human genes. And a new study suggests that just as human DNA varies from person to person, so too does the massive collection of microbial DNA in the intestine.

The research is the first to catalog the genetic variation of microbes that live in the gut, where they extract nutrients from food, synthesize vitamins, protect against infections, and produce compounds that naturally reduce inflammation. The widespread uncovered by the scientists can help them understand how our microbial genes work together with our to keep us healthy or, in some cases, to cause disease.

The study, by researchers at Washington University School of Medicine in St. Louis and the European Molecular Biology Laboratory in Heidelberg, Germany, will be published online Dec. 5 in Nature.

"Surprisingly, each of us can be identified by the collective DNA of our gut microbes," says corresponding author George Weinstock, PhD, associate director of The Genome Institute at Washington University."That collection is individualized, completely analogous to our human genome. Differences in the way individuals respond to various drugs or the way they use specific nutrients can be traced to the genetic variation in our as well as in our human genes."

The researchers analyzed the in 252 stool samples from 207 individuals living in the United States and Europe. All the subjects had participated in one of two recent high-profile initiatives to catalog the diverse species of microbes that live in and on the body. Neither of those studies – the Human Microbiome Project, funded by the National Institutes of Health, and the Metagenomics of the Human Intestinal Tract (MetaHIT) project, funded by the European Commission – looked at the of the in the body.

For the new study, the researchers zeroed in on 101 species of microbes commonly found in the intestine, identifying more than 10 million single-letter changes in the collective DNA of those microbes. They also found numerous other DNA alterations, including insertions, deletions and structural changes.

In 43 subjects for whom the researchers had two collected at least a month apart (most were collected six months to a year after the initial sample), the researchers found very little variability in the microbial DNA over time, although the species of microbes in the intestine fluctuated.

"The microbial DNA in the intestine is remarkably stable, like a fingerprint," Weinstock explains. "Even after a year, we could still distinguish individuals by the genetic signature of their microbial DNA."

Babies become colonized with microbes as they pass through the birth canal and into the world. Those microbes come from their mothers and from the environment. Exactly how the microbes shape our lives is not yet known. But in the gut, research has suggested that an imbalance of bacteria may contribute to irritable bowel syndrome, Crohn's disease and even obesity.

With this new catalog, the researchers can begin to understand the selective forces that shape the microbiome – the collection of microbes and their genes – in the intestine.

"The DNA of our is a historical record of the microbial evolution in our bodies," says co-author Makendonka Mitreva, PhD, assistant professor of medicine. "Many of these organisms would have colonized us when we were very young and would have grown and evolved with us throughout our lifetimes."

Explore further: Breastfeeding is associated with a healthy infant gut

Related Stories

Breastfeeding is associated with a healthy infant gut

April 30, 2012
Early colonization of the gut by microbes in infants is critical for development of their intestinal tract and in immune development. A new study, published in BioMed Central's open access journal Genome Biology, shows that ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.