Study identifies 75 genetic regions that influence red blood cell formation

December 5, 2012, Wellcome Trust Sanger Institute

New research is revealing how red blood cells are made and how the body regulates the amount of haemoglobin that is packaged in red blood cells at any time. Genomic analysis techniques have doubled the number of genetic regions that are likely to be involved in red blood cell formation and subsequent study using fruit flies has given insights into what these regions do.

Haemoglobin is the protein which captures oxygen from the lungs for transport and delivery to tissues. It colours blood cells red and each day hundreds of millions of fresh red blood cells have to be formed by blood to replace the ones which come to the end of their life cycle. Anaemia, one of the most common disorders for which people visit their surgery, ensues if the production of new red blood cells is insufficient or their lifespan is shortened. The new genetic information is laying the foundations for future studies into the roots of anaemia by uncovering new biological pathways and mechanisms involved in controlling the size and number of red blood cells and the levels of haemoglobin.

The researchers used genome-wide association studies to identify genetic regions that appeared to influence the formation of red blood cells and their haemoglobin content.

"We studied the genetic influences behind six different physical parameters of red blood cells that reflect the volume and number of red blood cells and the levels of ," says Dr , lead author from Imperial College, London. "Our initial genetic association study looked into the genomes of 135,367 people and identified 75 genetic regions that directly influence these different traits of red blood cells. More than half – 43 – of these discoveries are new in people."

The team then closely examined using approaches the 75 and the more than 3,000 genes responsible for lie close to these regions. They prioritised 121 'candidate' genes or genes that are likely to regulate a trait in red blood cells from this list and investigated their function using information on model systems like from public databases as well as newly-generated data for fruit fly.

"Our work shows how model systems like fruit fly and mice can be used to provide insights into human genetics," says Professor Willem Ouwehand, lead author from the University of Cambridge and NHS Blood and Transplant. "We searched through a Mouse Genome database and found that 29 of our 121 candidate genes are linked to red in mice.

"These previous studies revealed that - when the function of these genes was switched off- the mice frequently developed reduced numbers of red blood cells, and anaemia. These observations made in mice make it highly likely that the remaining candidate genes, about which there is no knowledge yet, are also important regulators of red blood cell formation in people."

To investigate further, the team then reduced or 'silenced' the activity of the in fruit flies. Although do not have red blood cells, they share some of the gene functions leading to the formation of blood elements. These studies confirmed that sets of genes involved in controlling human red blood cell traits in people were also important for the formation of blood cells in fly.

"These results support the view that genetic association studies identify sets of genes that are conserved in evolution across a wide range of species," says Dr Nicole Soranzo, lead author from the Wellcome Trust Sanger Institute. "This is exciting because it means that we can obtain extensive new insights into the genetics and of human health by studying model organisms.

"Although the underlying mechanisms for the majority of genes we've identified still need to be elucidated, our research is opening many doors for future studies on the generation of for clinical use in the laboratory and may also provide insights which may lead to improvements in the treatment of patients with inherited anaemias."

Explore further: Genome-wide study into new gene functions in the formation of platelets

More information: Pim van der Harst, Weihua Zhang, Irene Mateo Leach et al (2012). '75 genetic loci influencing the human red blood cell'
Published online in Nature 05 December. DOI: 10.1038/nature11677

Related Stories

Genome-wide study into new gene functions in the formation of platelets

November 30, 2011
In a study into the genetics of blood cell formation, researchers have identified 68 regions of the genome that affect the size and number of platelets. Platelets are small cells that circulate in the blood and are key to ...

Study uses stem cells to boost red blood cell production

August 7, 2012
(HealthDay) -- Using human stem cells, scientists have developed methods to boost the production of red blood cells, according to a new study.

Researchers discover way to save blood from ravages of chemo treatment

October 19, 2012
(Medical Xpress)—Chemotherapy kills blood cells as well as cancer cells, often with fatal results. Now Yale stem cell researchers have identified a method they hope one day will help cancer patients undergoing chemotherapy ...

The RHAU helicase: A key player in blood formation

July 31, 2012
Scientists at the Friedrich Miescher Institute for Biomedical Research have discovered that the helicase RHAU, a protein that can resolve complex structures in both DNA and RNA molecules, is essential for early embryonic ...

Recommended for you

Study of smoking and genetics illuminates complexities of blood pressure

February 15, 2018
Analyzing the genetics and smoking habits of more than half a million people has shed new light on the complexities of controlling blood pressure, according to a study led by researchers at Washington University School of ...

New mutation linked to ovarian cancer can be passed down through dad

February 15, 2018
A newly identified mutation, passed down through the X-chromosome, is linked to earlier onset of ovarian cancer in women and prostate cancer in father and sons. Kunle Odunsi, Kevin H. Eng and colleagues at Roswell Park Comprehensive ...

A gene that increases the risk of pancreatic cancer controls inflammation in normal tissue

February 14, 2018
Inflammation is a defensive response of the body to pathogens, but when it persists, it can be harmful, even leading to cancer. Hence, it is crucial to understand the relationship between inflammation and cancer. A group ...

Scientists develop low-cost way to build gene sequences

February 13, 2018
A new technique pioneered by UCLA researchers could enable scientists in any typical biochemistry laboratory to make their own gene sequences for only about $2 per gene. Researchers now generally buy gene sequences from commercial ...

New insights into gene underlying circadian rhythms

February 13, 2018
A genetic modification in a "clock gene" that influences circadian rhythm produced significant changes in the length and magnitude of cycles, providing insight into the complex system and giving scientists a new tool to further ...

Clues to aging found in stem cells' genomes

February 13, 2018
Little hints of immortality are lurking in fruit flies' stem cells.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.