Neurons die in Alzheimer's because of faulty cell cycle control before plaques and tangles appear

December 17, 2012, American Society for Cell Biology

The two infamous proteins, amyloid-beta (Aβ) and tau, that characterize advanced Alzheimer's disease (AD), start healthy neurons on the road to cell death long before the appearance of the deadly plaques and tangles by working together to reactivate the supposedly blocked cell cycle in brain cells, according to research presented on Dec. 17 at the American Society for Cell Biology's Annual Meeting in San Francisco.

Working in a of AD, George Bloom, PhD, of the University of Virginia (UVA) reports that neurons in AD start dying because they break the first law of human neuronal safety—stay out of the cell cycle.

Most normal adult neurons are permanently postmitotic; that is, they have finished dividing and are locked out of the cell cycle. In contrast, AD neurons frequently re-enter the cell cycle but fail to complete mitosis, and ultimately die. By considering this novel perspective on AD as a problem of the cell cycle, Dr. Bloom and colleagues at UVA and at the University of Alabama, Birmingham, have discovered what they call an "ironic pathway" to . The process requires the coordinated action of both Aβ and tau, which are the building blocks of plaques and tangles, respectively. Dr. Bloom's results show just how toxic the two proteins can be even when free in solution and not aggregated into plaques and tangles.

Using mouse neurons grown in culture, the UVA researchers found that Aβ , which are small aggregates of just a few Aβ molecules each, induce the neurons to re-enter the cell cycle. Interestingly, the neurons must make and accumulate tau in order for this cell cycle re-entry to occur. The mechanism for this misplaced re-entry into the cell cycle requires that Aβ oligomers activate multiple enzymes, each of which must then attach a phosphate to a specific site on the .

Following up on the cell culture results, Dr. Bloom and colleagues confirmed that Aβ-induced, tau-dependent cell cycle re-entry occurs in the brains of mice that were genetically engineered to mimic brains with human AD. The mouse brains were found to accumulate massive numbers of that had transitioned from a permanent cell cycle stop, known as G0 (G zero), to G1, the first stage of the cell cycle, by the time they were 6 months old. Remarkably, otherwise identical mice that lacked functional tau genes showed no sign of cell cycle re-entry, confirming the cell culture results.

Neuronal cell cycle re-entry, a key step in the development of AD, can therefore be caused by signaling from Aβ through tau. Thus, Aβ and tau co-conspire to trigger seminal events in AD pathogenesis independently of their incorporation into plaques and tangles. Most important, Dr. Bloom believes that the activated protein kinases and phosphorylated forms of tau identified in this study represent potential targets for early diagnosis and treatment of AD.

Explore further: New protein linked to Alzheimer's disease

More information: "Amyloid-β signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer's disease," Monday, Dec. 17, 2012, 5:55:15 pm, Minisymposium 10: Cell Biology of Neurodegeneration, room 102

Related Stories

New protein linked to Alzheimer's disease

May 24, 2011
After decades of studying the pathological process that wipes out large volumes of memory, scientists at The Feinstein Institute for Medical Research discovered a molecule called c-Abl that has a known role in leukemia also ...

Researchers identify new group of proteins in the brains of Alzheimer's patients

June 13, 2012
Researchers from Boston University School of Medicine (BUSM) have identified a novel group of proteins that accumulate in the brains of patients with Alzheimer's disease. These findings, which appear online in the Journal ...

Recommended for you

Rocky start for Alzheimer's drug research in 2018

January 19, 2018
The year 2018, barely underway, has already dealt a series of disheartening blows to the quest for an Alzheimer's cure.

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Anxiety: An early indicator of Alzheimer's disease?

January 12, 2018
A new study suggests an association between elevated amyloid beta levels and the worsening of anxiety symptoms. The findings support the hypothesis that neuropsychiatric symptoms could represent the early manifestation of ...

One of the most promising drugs for Alzheimer's disease fails in clinical trials

January 11, 2018
To the roughly 400 clinical trials that have tested some experimental treatment for Alzheimer's disease and come up short, we can now add three more.

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018
Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.