Protein tied to cancer drug resistance in mice

December 7, 2012, Fox Chase Cancer Center

Blocking a specific protein renders tumors more vulnerable to treatment in mice, suggesting new therapies could eventually achieve the same in humans, according to new research from Fox Chase Cancer Center to be presented at the 2012 CTRC-AACR San Antonio Breast Cancer Symposium on Friday, December 7, 2012.

"Hopefully, with further testing, this research could one day result in a new therapy that blocks the effect of this protein and, in turn, boosts the effects of cancer drugs," says study author Elizabeth Hopper-Borge, PhD, Assistant Professor at Fox Chase.

The protein in question is a type of ATP-binding cassette drug efflux pumps, known more simply as ABC proteins. These proteins sit on the membranes of cells, where they act just like pumps—removing cancer drugs from the cell, thereby making them less effective. The body contains close to 50 such proteins, explains Hopper-Borge, but only 3 appear capable of evading the effects of cancer drugs, including common types used to treat lung, ovarian, and breast cancers.

The current research, supported by the National Institutes of Health, focuses on the protein ABCC10, which has not been studied in as much detail as some other ABC proteins, says Hopper-Borge. Last year, she and her colleagues found that mice lacking ABCC10 experienced physiological changes after taking a cancer drug, suggesting the drug was having an effect.

As part of the latest project, the authors performed a similar experiment in mice engineered to develop . They found that, 21 days after exposure to a cancer drug, the tumors that lacked ABCC10 were much smaller than the tumors that still carried the protein. "This is probably the first time it's been shown that removing this protein helps sensitize tumors to cancer drugs," says Hopper-Borge.

Looking closely at the tumors, the researchers also found that cells that lacked ABCC10 grew faster. Strangely, this finding is encouraging, says Hopper-Borge, since chemotherapy targets proliferating cells—and so may explain why the drugs now act on the faster-growing cells that lack ABCC10.

The next step, she says, is to try removing ABCC10 in more mouse models of breast cancer, and determine how active the protein is in different types of the disease. Eventually, if blocking the appears to consistently boost the effects of , researchers can identify and begin testing inhibitors of ABCC10 as additional treatments for cancer.

"Although this research is promising, it's in its early stages," cautions Hopper-Borge. "Consequently, it's premature for patients to ask their doctors to test them for the presence of ABCC10, since knowing that can't yet affect their treatment. But these results suggest that may one day change."

Explore further: Abcc10 may be effective in extending the effectiveness of anticancer drugs

Related Stories

Abcc10 may be effective in extending the effectiveness of anticancer drugs

May 16, 2011
Today's anticancer drugs often work wonders against malignancies, but sometimes tumors become resistant to the effects of such drugs, and treatment fails. Medical researchers would like to find ways of counteracting such ...

Diabetic drug could help prevent the spread of cancer

May 31, 2011
A protein activated by certain drugs already approved for treating Type II diabetes may slow or stop the spread of breast tumors.

Protein Aurora-A is found to be associated with survival in head and neck cancer

April 1, 2012
Researchers at Fox Chase Cancer Center in Philadelphia have found that a protein associated with other cancers appears to also be important in head and neck cancer, and may consequently serve as a good target for new treatments. ...

Novel approach to treating breast cancer shows great promise

December 7, 2011
In a novel therapeutic approach to treating breast cancer, Loyola University Medical Center researchers are reporting positive results from a clinical trial of a drug that targets tumor stem cells.

Researchers uncover new clues to the development of blood and other cancers

April 2, 2012
Scientists at Fox Chase Cancer Center have uncovered more details about how defects in components of the machinery that makes new proteins can lead to blood and other cancers. The findings, which will be presented at the ...

Protein that fuels lethal breast cancer growth emerges as potential new drug target

October 17, 2011
A protein in the nucleus of breast cancer cells that plays a role in fueling the growth of aggressive tumors may be a good target for new drugs, reports a research team at the Duke Cancer Institute.

Recommended for you

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.