Transplanted neural stem cells treat ALS in mouse model

December 19, 2012, Sanford-Burnham Medical Research Institute
Transplanted neural stem cells (shown here) were used to treat a mouse model of ALS. Credit: Sanford-Burnham Medical Research Institute

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is untreatable and fatal. Nerve cells in the spinal cord die, eventually taking away a person's ability to move or even breathe. A consortium of ALS researchers at multiple institutions, including Sanford-Burnham Medical Research Institute, Brigham and Women's Hospital, and the University of Massachusetts Medical School, tested transplanted neural stem cells as a treatment for the disease. In 11 independent studies, they found that transplanting neural stem cells into the spinal cord of a mouse model of ALS slows disease onset and progression. This treatment also improves host motor function and significantly prolongs survival. The transplanted neural stem cells did not benefit ALS mice by replacing deteriorating nerve cells. Instead, neural stem cells help by producing factors that preserve the health and function of the host's remaining nerve cells. They also reduce inflammation and suppress the number of disease-causing cells in the host's spinal cord.

These findings, published December 19 in Science Translational Medicine, demonstrate the potential hold for treating ALS and other .

"While not a cure for human ALS, we believe that the careful transplantation of neural stem cells, particularly into areas that can best sustain life—respiratory control centers, for example—may be ready for clinical trials," Evan Y. Snyder, M.D., Ph.D., director of Sanford-Burnham's Stem Cell and Regenerative Biology Program and senior author of the study.

Neural stem cells

In this study, researchers at multiple institutions conducted 11 independent studies to test neural in a well-established mouse model of ALS. They all found that this cell therapy reduced the symptoms and course of the ALS-like disease. They observed improved and in treated mice. Neural also slowed the disease's progression. What's more, 25 percent of the treated ALS mice in this study survived for one year or more—roughly three to four times longer than untreated mice.

Neural stem cells are the precursors of all brain cells. They can self-renew, making more neural stem cells, and differentiate, becoming nerve cells or other brain cells. These cells can also rescue malfunctioning nerve cells and help preserve and regenerate host brain tissue. But they've never before been studied extensively in a good model of adult ALS.

How neural stem cells benefit ALS mice

Transplanted neural stem cells helped the ALS mice, but not for the obvious reason—not because they became nerve cells, replacing those missing in the ALS spinal cord. The biggest impact actually came from a series of other beneficial neural stem cell activities. It turns out neural stem cells produce protective molecules. They also trigger host cells to produce their own protective molecules. In turn, these factors help spare host nerve cells from further destruction.

Then a number of other positive events take place in treated mice. The transplanted normal neural stem cells change the fate of the host's own diseased neural stem cells—for the better. This change decreases the number of toxin-producing, disease-promoting cells in the host's spinal cord. Transplanted neural stem cells also reduce inflammation.

"We discovered that cell replacement plays a surprisingly small role in these impressive clinical benefits. Rather, the stem cells change the host environment for the better and protect the endangered ," said Snyder. "This realization is important because most diseases are now being recognized as multifaceted in their cause and their symptoms—they don't involve just one cell type or one malfunctioning process. We are coming to recognize that the multifaceted actions of the stem cell may address a number of these disease processes."

Explore further: Stem cell therapy for spinal cord injury

Related Stories

Stem cell therapy for spinal cord injury

September 25, 2012
Stem cells are considered promising agents for the recovery of spinal cord injuries. European scientists explore their abilities and plan future therapeutic strategies.

New class of stem cell-like cells discovered offers possibility for spinal cord repair

September 15, 2011
The Allen Institute for Brain Science announced today the discovery of a new class of cells in the spinal cord that act like neural stem cells, offering a fresh avenue in the search for therapies to treat spinal cord injury ...

A new program for neural stem cells

May 12, 2011
German researchers succeed in obtaining brain and spinal cord cells from stem cells of the peripheral nervous system.

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.