New brain circuit sheds light on development of voluntary movements

January 23, 2013
A mouse pup learns to use its whiskers to sense objects at about the second week of life. The nerve connections that enable this activity are helping researchers at Duke Medicine learn how human brains develop and function. Credit: Duke Medicine

All parents know the infant milestones: turning over, learning to crawl, standing, and taking that first unassisted step. Achieving each accomplishment presumably requires the formation of new connections among subsets of the billions of nerve cells in the infant's brain. But how, when and where those connections form has been a mystery.

Now researchers at Duke Medicine have begun to find answers. In a study reported Jan. 23, 2013, in the scientific journal Neuron, the research team describes the entire network of that are connected to specific motor neurons controlling whisker muscles in newborn mice.

A better understanding of such motor control circuits could help inform how develop, potentially leading to new ways of restoring movement in people who suffer paralysis from brain injuries, or to the development of better prosthetics for limb replacement.

" to mice are like fingers to humans, in that both are moving touch sensors," said lead investigator Fan Wang, PhD, associate professor of and member of the Duke Institute for . "Understanding how the mouse's brain controls whisker movements may tell us about of finger movements in people."

Mice are active at night, so they rely heavily on whiskers to detect and discriminate objects in the dark, brushing their whiskers against objects in a rhythmic back-and-forth sweeping pattern referred to as "whisking". But this whisking behavior does not appear until about two weeks after birth, when young mice start to explore the world outside their nest.

To learn how motor control of whiskers takes place, Wang and postdoctoral fellow Jun Takatoh used a new technique that takes advantage of the ' ability to spread through connected . A disabled form of the virus used to vaccinate pets was created with the ability to express a fluorescent protein. The researchers were able to trace its path through a network of brain cells directly connected to the motor neurons controlling whisker movement.

"The precision of this mapping method allowed us to ask a key question, namely are parts of the whisker motor control circuitry not yet connected in newborn mice, and are such missing links added later to enable whisking?" Wang said.

By taking a series of pictures in the fluorescently labeled brains during the first two weeks after birth, the research team chronicled the developing circuits before and after mice start whisking.

"When we traced the circuit it was stunning in the sense that we didn't realize there are so many pools of neurons located throughout the brainstem that are connected to whisker motor neurons," said Wang. "It's remarkable that a single motor neuron receives so many inputs, and somehow is able to integrate them."

At the same time whisking movements emerge, motor neurons receive a new set of inputs from a region of the brainstem called the LPGi. A single LPGi neuron is connected to motor neurons on both sides of the face, putting them in perfect position to synchronize the movements of left and right whiskers.

To learn more about the new circuit formed between LPGi and motor neurons, Wang and Takatoh drew on the expertise of Duke colleague Richard Mooney, PhD, professor of neurobiology, and his student Anders Nelson. Together, the researchers were able to record the labeled neurons and found the LPGi neurons communicate with motor neurons using glutamate, the main neurotransmitter that stimulates the brain. They further discovered that LPGi neurons receive direct inputs from the motor cortex.

"This makes sense because exploratory whisking is a voluntary movement under control of the motor cortex," Wang said. "Excitatory input is needed for initiating such movements, and LPGi may be critical for relaying signals from the motor cortex to whisker ."

The researchers will next explore the connectivity by using genetic, viral and optical tools to see what happens when certain components of the circuits are activated or silenced during various motor tasks.

Explore further: From the twitching whiskers of babes: Naptime behavior shapes the brain

Related Stories

From the twitching whiskers of babes: Naptime behavior shapes the brain

October 18, 2012
The whiskers of newborn rats twitch as they sleep, and that could open the door to new understandings about the intimate connections between brain and body. The discovery reinforces the notion that such involuntary movements ...

One neuron has huge impact on brain behaviour

November 15, 2012
(Medical Xpress)—Researchers from Australia and the USA have made a unique discovery about how the brain computes sensory information.

Using rabies virus, researcher tracks inputs to dopamine neurons

June 6, 2012
A genetically-modified version of the rabies virus is helping scientists at Harvard to trace neural pathways in the brain, a research effort that could one day lead to treatments for Parkinson's disease and addiction.

New connections between brain cells form in clusters during learning

February 19, 2012
New connections between brain cells emerge in clusters in the brain as animals learn to perform a new task, according to a study published in Nature on February 19 (advance online publication). Led by researchers at the University ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.