Drug targets hard-to-reach leukemia stem cells responsible for relapses

January 17, 2013, University of California - San Diego
Chronic myeloid leukemia leads to production of many abnormal white blood cells, which do not fight infection as well as normal white blood cells. As these abnormal cells accumulate in blood and bone marrow, they crowd out healthy white blood cells, red blood cells and platelets, impairing normal functions. Credit: UC San Diego School of Medicine

Researchers at the University of California, San Diego School of Medicine have discovered that hard-to-reach, drug-resistant leukemia stem cells (LSCs) that overexpress multiple pro-survival protein forms are sensitive – and thus vulnerable – to a novel cancer stem cell-targeting drug currently under development.

The findings, published in the January 17 online issue of Cell Stem Cell, open the possibility that diseases like (CML) and some solid tumor cancers might – in combination with other therapies – be more effectively treated with this drug, and with a lower chance of relapse.

Led by principal investigator Catriona H. M. Jamieson, MD, PhD, associate professor of medicine and director of at UC San Diego Moores Cancer Center, the researchers found that a compound called sabutoclax appears to selectively target LSCs that express particular protein isoforms through alternatively splicing, a fundamental process in which a gene is able to code for multiple proteins.

An emerging class of drugs called (TKI) – such as imitinib (Gleevec), gifitinib (Iressa) and sunitinib () – has become a popular anti-cancer treatment. However, current TKIs are not 100 percent effective. In cases of CML, for example, some LSCs tucked protectively within bone marrow elude destruction, develop resistance to therapy, self-renew and eventually cause the leukemia to dramatically return.

Jamieson and colleagues found that alternative splicing of BCL2 genes, which code for proteins involved in apoptosis or , specifically promoted of dormant white blood cell precursors into "blast crisis" LSCs. The blast crisis is the final phase of CML when overabundant, abnormal crowd out healthy cells, causing serious dysfunction.

Of clinical importance, they noted that sabutoclax, which suppresses all BCL2 anti-apoptotic proteins, renders these marrow-dwelling blast crisis LSCs sensitive – and more susceptible – to TKI-based therapeutics at doses that do not harm normal progenitor cells.

"Our findings show that pan-BCL2 inhibition will be critical for the eradication of cancer stem cells in CML and that there is an essential link between cancer stem cell dormancy, pro-survival BCL2 isoform expression and therapeutic resistance," Jamieson said. "By using a novel pan-BCL2 inhibitor, we may be able to prevent therapeutic resistance by sensitizing malignant stem cell clones to TKIs."

The findings may have implications for treating solid tumor cancers, such as colon, prostate, breast, and brain cancers, noted Daniel J. Goff, the study's first author.

"With many of these tumor types being shown to harbor cancer stem cells, it raises the question of whether BCL2 family expression as well as isoform-switching may be crucial for the maintenance of cancer in these diseases as well," he said. "If so, they may also be candidates for treatment with a BCL2 inhibitor like sabutoclax."

Explore further: Therapy targets leukemia stem cells

Related Stories

Therapy targets leukemia stem cells

February 13, 2012
New research takes aim at stubborn cancer stem cells that are thought to be responsible for treatment resistance and relapse. The study, published by Cell Press in the February 14 issue of the journal Cancer Cell, provides ...

Enzyme accelerates malignant stem cell cloning in chronic myeloid leukemia

December 24, 2012
An international team, headed by researchers at the University of California, San Diego School of Medicine, has identified a key enzyme in the reprogramming process that promotes malignant stem cell cloning and the growth ...

To prevent leukemia's dreaded return, go for the stem cells

April 5, 2012
Researchers reporting in the April Cell Stem Cell, a Cell Press publication, have found a way to stop leukemia stem cells in their tracks. The advance in mice suggests that a combination approach to therapy might stamp out ...

Recommended for you

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.