New study finds key mechanism in calcium regulation

January 3, 2013

All living cells keep their cellular calcium concentration at a very low level. Since a small increase in calcium can affect many critical cellular functions (an elevated calcium concentration over an extended period can induce cell death), powerful cellular mechanisms ensure that calcium concentration quickly returns to its low level.

It is known that impairments of cellular underlie almost all neurodegenerative diseases. For example, age-related loss of calcium regulation was shown to promote cell vulnerability in Alzheimer's disease.

In a study recently published in the , Hebrew University of Jerusalem researchers, along with others from Israel and the US, presented their findings of a previously undescribed cellular mechanism which is essential for keeping cellular low. This mechanism operates together with other already characterized mechanisms.

Dr. Shirley Weiss and Prof. Baruch Minke of the Hebrew University's Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC) characterized this mechanism using of the fruit fly, which is a powerful model for studying basic biological processes.

They found that a protein-designated calphotin (a calcium buffer) operates by sequestering elevated calcium concentration. Genetic elimination of calphotin led to a light-induced rise in cellular calcium for an abnormally extended time, leading to retinal photoreceptor degeneration in the fruit flies.

The researchers stress that this kind of research, leading to a better understanding of the fundamental mechanisms underlying cellular calcium regulation, is critical for the development of new drugs and treatments for neurodegenerative diseases.

Explore further: Researchers discover turbo switch of calcium pump in biological cells

More information: Compartmentalization and Ca2 Buffering Are Essential for Prevention of Light-Induced Retinal Degeneration, Shirley Weiss, Elkana Kohn, Daniela Dadon, Ben Katz, Maximilian Peters, Mario Lebendiker, Mickey Kosloff, Nansi Jo Colley, and Baruch Minke, The Journal of Neuroscience, October 17, 2012. 32(42):14696 –14708

Related Stories

Researchers discover turbo switch of calcium pump in biological cells

October 21, 2012
When animals and plants are exposed to influences such as bacterial attack, odour and cold, calcium ions flow into the cells. The calcium provides the cells with a signal about what is going on outside, but as high concentrations ...

Researchers identifie gatekeeper protein, new details on cell's power source

October 25, 2012
Researchers at Temple University's Center for Translational Medicine and the University of Pennsylvania have identified a protein that serves as a gatekeeper for controlling the rush of calcium into the cell's power source, ...

The mathematics of a heart beat could save lives

February 15, 2012
(Medical Xpress) -- What we perceive as the beating of our heart is actually the co-ordinated action of more than a billion muscle cells. Most of the time, only the muscle cells from the larger heart chambers contract and ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.