Stem cell 'homing' signal may help treat heart failure patients

February 21, 2013

In the first human study of its kind, researchers activated heart failure patients' stem cells with gene therapy to improve their symptoms, heart function and quality of life, according to a study in the American Heart Association journal Circulation Research. Researchers delivered a gene that encodes a factor called SDF-1 to activate stem cells like a "homing" signal.

The study is unique because researchers introduced the "homing" factor to draw to the site of injury and enhance the body's stem cell-based repair process. Generally, researchers extract and expand the number of cells, then deliver them back to the subject.

"We believe stem cells are always trying to repair tissue, but they don't do it well—not because we lack stem cells but, rather, the signals that regulate our stem cells are impaired," said Marc S. Penn, M.D., Ph.D., Director of Research at Summa Cardiovascular Institute in Akron, Ohio, and lead author and professor of medicine at Northeast Ohio Medical University in Rootstown, Ohio.

SDF-1 is a naturally occurring protein, secreted by cells, that guides the movement of other cells. Previous research by Penn and colleagues has shown SDF-1 activates and recruits the body's stem cells, allowing them to heal damaged tissue. However, the effect may be short-lived. For example, SDF-1 that's naturally expressed after a heart attack lasts only a week.

In the study, researchers attempted to re-establish and extend the time that SDF-1 could stimulate patients' stem cells. ' average age was 66 years.

Researchers injected one of three doses of the SDF-1 gene (5mg, 15mg or 30mg) into the hearts of 17 patients with symptomatic heart failure and monitored them for up to a year. Four months after treatment, they found:

  • Patients improved their average distance by 40 meters during a six-minute walking test.
  • Patients reported improved quality of life.
  • The heart's pumping ability improved, particularly for those receiving the two highest doses of SDF-1 compared to the lowest dose.
  • No apparent side effects occurred with treatment.
"We found 50 percent of patients receiving the two highest doses still had positive effects one year after treatment with their heart failure classification improving by at least one level," Penn said. "They still had evidence of damage, but they functioned better and were feeling better."

The findings indicate people's stem cells have the potential to induce healing without having to be taken out of the body, Penn said.

"Our study also shows has the potential to help people heal their own hearts."

At the start of the study, participants didn't have significant reversible heart damage, but lacked blood flow in the areas bordering their damaged heart tissue.

The study's results—consistent with other animal and laboratory studies of SDF-1—suggest that SDF-1 gene injections can increase blood flow around an area of damaged tissue, which has been deemed irreversible by other testing.

Researchers are now comparing results from receiving SDF-1 with patients who aren't. If the trial goes well, the therapy could be widely available to patients within four to five years, Penn said.

Explore further: Genetically engineered cardiac stem cells repaired damaged mouse heart

Related Stories

Genetically engineered cardiac stem cells repaired damaged mouse heart

July 19, 2011
Genetically engineered human cardiac stem cells helped repair damaged heart tissue and improved function after a heart attack, in a new animal study.

Helping the heart help itself: Research points to new use for stem cells

April 8, 2011
(PhysOrg.com) -- Human trials of stem cell therapy for post-heart attack patients have raised as many questions as they have answered -- because while the patients have tended to show some improvement in heart function, the ...

Aging heart cells rejuvenated by modified stem cells

July 23, 2012
Damaged and aged heart tissue of older heart failure patients was rejuvenated by stem cells modified by scientists, according to research presented at the American Heart Association's Basic Cardiovascular Sciences 2012 Scientific ...

Recommended for you

Ultra-thin tissue samples could help to understand and treat heart disease

December 12, 2017
A new method for preparing ultra-thin slices of heart tissue in the lab could help scientists to study how cells behave inside a beating heart.

Research reveals how diabetes in pregnancy affects baby's heart

December 12, 2017
Researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have discovered how high glucose levels—whether caused by diabetes or other factors—keep heart cells from maturing ...

Young diabetics could have seven times higher risk for sudden cardiac death

December 12, 2017
Young diabetics could have seven times more risk of dying from sudden cardiac arrest than their peers who don't have diabetes, according to new research.

Blood flow–sensing protein protects against atherosclerosis in mice

December 12, 2017
UCLA scientists have found that a protein known as NOTCH1 helps ward off inflammation in the walls of blood vessels, preventing atherosclerosis—the narrowing and hardening of arteries that can cause heart attacks and strokes. ...

Half of people aged 40-54 have hardened arteries: study

December 11, 2017
Half of middle-aged people who are normal weight and don't smoke or have diabetes may have clogged arteries, researchers said Thursday, urging stronger measures to lower cholesterol.

Research suggests new pathways for hyperaldosteronism

December 7, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP), in collaboration with researchers at Eunice Kennedy Shriver National Institute of Child Health and Human Development, part of the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.