Stem cell 'homing' signal may help treat heart failure patients

February 21, 2013, American Heart Association

In the first human study of its kind, researchers activated heart failure patients' stem cells with gene therapy to improve their symptoms, heart function and quality of life, according to a study in the American Heart Association journal Circulation Research. Researchers delivered a gene that encodes a factor called SDF-1 to activate stem cells like a "homing" signal.

The study is unique because researchers introduced the "homing" factor to draw to the site of injury and enhance the body's stem cell-based repair process. Generally, researchers extract and expand the number of cells, then deliver them back to the subject.

"We believe stem cells are always trying to repair tissue, but they don't do it well—not because we lack stem cells but, rather, the signals that regulate our stem cells are impaired," said Marc S. Penn, M.D., Ph.D., Director of Research at Summa Cardiovascular Institute in Akron, Ohio, and lead author and professor of medicine at Northeast Ohio Medical University in Rootstown, Ohio.

SDF-1 is a naturally occurring protein, secreted by cells, that guides the movement of other cells. Previous research by Penn and colleagues has shown SDF-1 activates and recruits the body's stem cells, allowing them to heal damaged tissue. However, the effect may be short-lived. For example, SDF-1 that's naturally expressed after a heart attack lasts only a week.

In the study, researchers attempted to re-establish and extend the time that SDF-1 could stimulate patients' stem cells. ' average age was 66 years.

Researchers injected one of three doses of the SDF-1 gene (5mg, 15mg or 30mg) into the hearts of 17 patients with symptomatic heart failure and monitored them for up to a year. Four months after treatment, they found:

  • Patients improved their average distance by 40 meters during a six-minute walking test.
  • Patients reported improved quality of life.
  • The heart's pumping ability improved, particularly for those receiving the two highest doses of SDF-1 compared to the lowest dose.
  • No apparent side effects occurred with treatment.
"We found 50 percent of patients receiving the two highest doses still had positive effects one year after treatment with their heart failure classification improving by at least one level," Penn said. "They still had evidence of damage, but they functioned better and were feeling better."

The findings indicate people's stem cells have the potential to induce healing without having to be taken out of the body, Penn said.

"Our study also shows has the potential to help people heal their own hearts."

At the start of the study, participants didn't have significant reversible heart damage, but lacked blood flow in the areas bordering their damaged heart tissue.

The study's results—consistent with other animal and laboratory studies of SDF-1—suggest that SDF-1 gene injections can increase blood flow around an area of damaged tissue, which has been deemed irreversible by other testing.

Researchers are now comparing results from receiving SDF-1 with patients who aren't. If the trial goes well, the therapy could be widely available to patients within four to five years, Penn said.

Explore further: Genetically engineered cardiac stem cells repaired damaged mouse heart

Related Stories

Genetically engineered cardiac stem cells repaired damaged mouse heart

July 19, 2011
Genetically engineered human cardiac stem cells helped repair damaged heart tissue and improved function after a heart attack, in a new animal study.

Helping the heart help itself: Research points to new use for stem cells

April 8, 2011
(PhysOrg.com) -- Human trials of stem cell therapy for post-heart attack patients have raised as many questions as they have answered -- because while the patients have tended to show some improvement in heart function, the ...

Aging heart cells rejuvenated by modified stem cells

July 23, 2012
Damaged and aged heart tissue of older heart failure patients was rejuvenated by stem cells modified by scientists, according to research presented at the American Heart Association's Basic Cardiovascular Sciences 2012 Scientific ...

Recommended for you

Infections could trigger stroke in pregnant women during hospital delivery

April 20, 2018
Pregnant women who have an infection when they enter the hospital for delivery might be at higher risk of having a stroke during their stay, according to new research.

Compound improves stroke outcome by reducing lingering inflammation

April 20, 2018
An experimental compound appears to improve stroke outcome by reducing the destructive inflammation that can continue months after a stroke, scientists report.

Changing how blood pressure is measured will save lives

April 19, 2018
Traditional methods of testing for high-blood pressure are no longer adequate and risk missing vital health signs, which can lead to premature death, a study co-led by UCL has found.

Eyes of adolescents could reveal risk of cardiovascular disease

April 19, 2018
New research has found that poorer well-being or 'health-related quality of life' (HRQoL) in adolescence could be an indicator of future cardiovascular disease risk.

Comparing strategies to guide blood pressure treatment

April 18, 2018
A strategy that examines a patient's overall heart disease and stroke risk to determine blood pressure treatment—rather than blood pressure levels alone—is more effective at preventing events like heart attacks, strokes ...

Obesity linked with higher chance of developing rapid, irregular heart rate

April 18, 2018
People with obesity are more likely to develop a rapid and irregular heart rate, called atrial fibrillation, which can lead to stroke, heart failure and other complications, according to Penn State researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.