How the brain loses and regains consciousness (w/ video)

March 4, 2013 by Anne Trafton, Massachusetts Institute of Technology
How the brain loses and regains consciousness (w/ Video)

Since the mid-1800s, doctors have used drugs to induce general anesthesia in patients undergoing surgery. Despite their widespread use, little is known about how these drugs create such a profound loss of consciousness.

In a new study that tracked in human volunteers over a two-hour period as they lost and regained consciousness, researchers from MIT and Massachusetts General Hospital (MGH) have identified distinctive brain patterns associated with different stages of . The findings shed light on how one commonly used anesthesia drug exerts its effects, and could help doctors better monitor patients during surgery and prevent rare cases of patients waking up during operations.

Anesthesiologists now rely on a monitoring system that takes (EEG) information and combines it into a single number between zero and 100. However, that index actually obscures the information that would be most useful, according to the authors of the new study, which appears in the the week of March 4.

"When anesthesiologists are taking care of someone in the , they can use the information in this article to make sure that someone is unconscious, and they can have a specific idea of when the person may be regaining consciousness," says senior author Emery Brown, an MIT professor of brain and cognitive sciences and health sciences and technology and an at MGH.

Lead author of the paper is Patrick Purdon, an instructor of anesthesia at MGH and Harvard Medical School.

Distinctive patterns

Last fall, Purdon, Brown and colleagues published a study of brain activity in epileptic patients as they went under anesthesia. Using electrodes that had been implanted in the patients' brains as part of their treatment for epilepsy, the researchers were able to identify a signature EEG pattern that emerged during anesthesia.

In the new study, the researchers studied healthy volunteers, measuring their brain activity with an array of 64 electrodes attached to the scalp. Not only did they find patterns that appeared to correspond to what they saw in last year's study, they were also able to discern much more detail, because they gave the dose of propofol over a longer period of time and followed subjects until they came out of anesthesia.

This array of videos shows spectrographic data (representing brain wave frequencies) from each of 44 electrodes attached to the scalp of a healthy volunteer undergoing propofol anesthesia. The spectrograms are arranged according to their approximate position on the scalp, with the front of the head at the top of the screen, and the back of the head at the bottom of the screen. Activity moves from back to front with loss of consciousness (levels 1 to 5) and from back to front with return of consciousness (levels 6 to 8). Each video shows brain activity throughout a 140-minute period of the study. Video by Aylin Cimenser. Reproduced from PNAS with permission.

While the subjects received propofol, the researchers monitored their responsiveness to sounds. Every four seconds, the subjects heard either a mechanical tone or a word, such as their name. The researchers measured EEG activity throughout the process, as the subjects pressed a button to indicate whether they heard the sound.

As the subjects became less responsive, distinct brain patterns appeared. Early on, when the subjects were just beginning to lose consciousness, the researchers detected an oscillation of brain activity in the low frequency (0.1 to 1 hertz) and alpha frequency (8 to 12 hertz) bands, in the frontal cortex. They also found a specific relationship between the oscillations in those two frequency bands: Alpha oscillations peaked as the low-frequency waves were at their lowest point.

When the brain reached a slightly deeper level of anesthesia, a marked transition occurred: The alpha oscillations flipped so their highest points occurred when the low frequency waves were also peaking.

The researchers believe that these alpha and low-frequency oscillations, which they also detected in last year's study, produce unconsciousness by disrupting normal communication between different brain regions. The oscillations appear to constrain the amount of information that can pass between the frontal cortex and the thalamus, which normally communicate with each other across a very broad frequency band to relay sensory information and control attention.

The oscillations also prevent different parts of the cortex from coordinating with each other. In last year's study, the researchers found that during anesthesia, neurons within small, localized brain regions are active for a few hundred milliseconds, then shut off again for a few hundred milliseconds. This flickering of activity, which creates the slow oscillation pattern, prevents brain regions from communicating normally.

Better anesthesia monitoring

When the researchers began to slowly decrease the dose of propofol, to bring the subjects out of anesthesia, they saw a reversal of the brain activity patterns that appeared when the subjects lost consciousness. A few minutes before regaining consciousness, the alpha oscillations flipped so that they were at their peak when the low-frequency waves were at their lowest point.

"That is the signature that would allow someone to determine if a patient is coming out of anesthesia too early, with this drug," Purdon says.

Cases in which patients regain consciousness during surgery are alarming but very rare, with one or two occurrences in 10,000 operations, Brown says.

"It's not something that we're fighting with every day, but when it does happen, it creates this visceral fear, understandably, in the public. And anesthesiologists don't have a way of responding because we really don't know when you're unconscious," he says. "This is now a solved problem."

Purdon and Brown are now starting a training program for anesthesiologists and residents at MGH to train them to interpret the information necessary to measure depth of anesthesia. That information is available through the EEG monitors that are now used during most operations, Purdon says. Because propofol is the most widely used anesthesia drug, the new findings should prove valuable for most operations.

In follow-up studies, the researchers are now studying the brain activity patterns produced by other drugs.

Explore further: Research discovers how brain activity changes when anesthesia induces unconsciousness

More information: "Electroencephalogram signatures of loss and recovery of consciousness from propofol," by Patrick L. Purdon et al. PNAS, 2013.

Related Stories

Research discovers how brain activity changes when anesthesia induces unconsciousness

November 5, 2012
Investigators at Massachusetts General Hospital (MGH) and Massachusetts Institute of Technology (MIT) have identified for the first time a pattern of brain activity that appears to signal exactly when patients lose consciousness ...

Metabolic patterns of propofol, sevoflurane differ in children

October 26, 2012
(HealthDay)—For children undergoing routine anesthesia for medically indicated magnetic resonance imaging (MRI), the metabolic signature varies with use of sevoflurane and propofol, according to a study published in the ...

Recovery from propofol anesthesia may be sped by use of common stimulant

April 5, 2012
The ability of the commonly used stimulant methylphenidate (Ritalin) to speed recovery from general anesthesia appears to apply both to the inhaled gas isoflurane, as previously reported, and to the intravenous drug propofol. ...

Primitive consciousness emerges first as you awaken from anesthesia

April 4, 2012
Awakening from anesthesia is often associated with an initial phase of delirious struggle before the full restoration of awareness and orientation to one's surroundings. Scientists now know why this may occur: primitive consciousness ...

Anesthesia drugs really do put us to sleep

October 25, 2012
When patients are put under anesthesia, they are often told they will be "put to sleep," and now it appears that in some ways that's exactly what the drugs do to the brain. New evidence in mice reported online on October ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.