Detecting circulating tumor cells

March 25, 2013

A proof-of-concept device is nearly perfect in separating breast cancer cells from blood.

About 1 in 4 deaths in the United States are due to cancer, but primary tumors are rarely fatal. Instead, it's when tumors metastasize that cancer becomes so deadly. To help patients and physicians make , teams of researchers have been working on various methods to detect cancer's spread – via the bloodstream – before secondary tumors develop. Now, one team reports a nearly perfect method for separating from blood. They describe their proof-of-concept device in a paper accepted for publication in Biomicrofluidics.

Detecting and separating (CTCs) is like finding the proverbial needle in a haystack: as few as one in a billion cells in a patient's bloodstream may be a CTC. Separation techniques vary widely, relying on differences in chemical, paramagnetic, or to distinguish CTCs from blood cells, or using mechanical sieves to cull the larger CTCs from the smaller blood cells. More recently, researchers have applied forces to fluid containing both and CTCs, using differences in inertia to sort cells. The technique, called "hydrodynamic sorting," is faster and easier than other sorting techniques. Like other mechanical techniques, it also allows researchers to collect viable cells after sorting them.

The team employed hydrodynamic sorting to develop their new device, called a multi-stage, multi-orifice flow fractionation (MS-MOFF) system. A previous design by the same team had just a single stage for applying hydrodynamic forces, but by adding an additional stage – so the output of the first stage becomes the input to the second stage – the researchers improved the separation efficiency of CTCs from 88.8% to 98.9%. Required pretreatment of the samples still makes MS-MOFF a proof-of-concept device, but the researchers suggest several ways to overcome such limitations and so make it useful for clinical applications.

Explore further: Not all tumor cells are equal: Study reveals huge genetic diversity in cells shed by tumors

More information: "Continual collection and re-separation of circulating tumor cells (CTCs) from blood using multi-stage multi-orifice flow fractionation," is published in Biomicrofluidics. bmf.aip.org/resource/1/biomgb/v7/i1/p014105_s1

Related Stories

Not all tumor cells are equal: Study reveals huge genetic diversity in cells shed by tumors

May 7, 2012
The cells that slough off from a cancerous tumor into the bloodstream are a genetically diverse bunch, Stanford University School of Medicine researchers have found. Some have genes turned on that give them the potential ...

Circulating tumor cells not linked to survival in newly diagnosed inflammatory breast cancer

December 9, 2011
The presence of circulating tumor cells in the blood appears to have no relationship to survival in women who have just been diagnosed with inflammatory breast cancer, according to new research from Fox Chase Cancer Center. ...

Researchers identify potential treatment target for metastatic pancreatic cancer using CTC chip technology

July 30, 2012
(Medical Xpress) -- Researchers with the Stand Up To Cancer CTC Chip Dream Team have identified a potential treatment target in metastatic pancreatic cancer through a detailed analysis of genes expressed in circulating tumor ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.