Human Connectome Project releases major data set on brain connectivity

March 5, 2013

The Human Connectome Project, a five-year endeavor to link brain connectivity to human behavior, has released a set of high-quality imaging and behavioral data to the scientific community. The project has two major goals: to collect vast amounts of data using advanced brain imaging methods on a large population of healthy adults, and to make the data freely available so that scientists worldwide can make further discoveries about brain circuitry.

The initial data release includes brain imaging scans plus behavioral information—individual differences in personality, , emotional characteristics and perceptual function—obtained from 68 healthy adult volunteers. Over the next several years, the number of subjects studied will increase steadily to a final target of 1,200. The initial release is an important milestone because the new data have much higher resolution in space and time than data obtained by conventional brain scans.

The Human Connectome Project (HCP) consortium is led by David C. Van Essen, PhD, Alumni Endowed Professor at Washington University School of Medicine in St. Louis, and Kamil Ugurbil, PhD, Director of the Center for Magnetic Resonance Research and the McKnight Presidential Endowed Chair Professor at the University of Minnesota.

"By making this unique data set available now, and continuing with regular data releases every quarter, the Human Connectome Project is enabling the scientific community to immediately begin exploring relationships between and individual behavior," says Van Essen. "The HCP will have a major impact on our understanding of the healthy adult , and it will set the stage for future projects that examine changes in brain circuits underlying the wide variety of afflicting humankind."

The consortium includes more than 100 investigators and technical staff at 10 institutions in the United States and Europe. It is funded by 16 components of the National Institutes of Health via the Blueprint for Neuroscience Research.

"The high quality of the data being made available in this release reflects an intensive, multiyear effort to improve the data acquisition and analysis methods by this dedicated international team of investigators," says Ugurbil.

The data set includes information about brain connectivity in each individual, using two distinct magnetic resonance imaging (MRI) approaches. One, called resting-state functional connectivity, is based on spontaneous fluctuations in functional MRI signals that occur in a complex pattern in space and time throughout the gray matter of the brain. Another, called diffusion imaging, provides information about the long-distance "wiring" – the anatomical pathways traversing the brain's white matter. Each method has its own limitations, and analyses of both functional connectivity and structural connectivity in each subject should allow deeper insight than by either method alone.

Each subject is also scanned while performing a variety of tasks within the scanner, thereby providing extensive information about "Task-fMRI" brain activation patterns. Behavioral data using a variety of tests performed outside the scanner are being released along with the scan data for each subject. The subjects are drawn from families that include siblings, some of whom are twins. This will enable studies of the heritability of brain circuits.

The imaging data set released by the HCP takes up about two terabytes (2 trillion bytes) of computer memory—the equivalent of more than 400 DVDs—and is stored in a customized database called "ConnectomeDB."

"ConnectomeDB is the next-generation neuroinformatics software for data sharing and data mining. It's a convenient and user-friendly way for scientists to explore the available HCP data and to download data of interest for their research," says Daniel S. Marcus, PhD, assistant professor of radiology and director of the Neuroinformatics Research Group at Washington University School of Medicine. "The Human Connectome Project represents a major advance in sharing brain imaging data in ways that will accelerate the pace of discovery about the human in health and disease."

Explore further: Scientists have new help finding their way around brain's nooks and crannies

Related Stories

Scientists have new help finding their way around brain's nooks and crannies

August 9, 2011
Like explorers mapping a new planet, scientists probing the brain need every type of landmark they can get. Each mountain, river or forest helps scientists find their way through the intricacies of the human brain.

What can magnetic resonance tractography teach us about human brain anatomy?

September 26, 2011
Magnetic resonance tractography (MRT) is a valuable, noninvasive imaging tool for studying human brain anatomy and, as MRT methods and technologies advance, has the potential to yield new and illuminating information on brain ...

Data release from the Allen Institute for Brain Science expands online atlas offerings

June 7, 2012
The Allen Institute for Brain Science announced today its latest public data release, enhancing online resources available via the Allen Brain Atlas data portal and expanding its application programming interface (API).

Can new diagnostic approaches help assess brain function in unconscious, brain-injured patients?

May 9, 2012
Disorders of consciousness such as coma or a vegetative state caused by severe brain injury are poorly understood and their diagnosis has relied mainly on patient responses and measures of brain activity. However, new functional ...

Brain research provides clues to what makes people think and behave differently

February 6, 2013
Differences in the physical connections of the brain are at the root of what make people think and behave differently from one another. Researchers reporting in the February 6 issue of the Cell Press journal Neuron shed new ...

Recommended for you

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

Bird songs provide insight into how developing brain forms memories

July 24, 2017
Researchers at the University of Chicago have demonstrated, for the first time, that a key protein complex in the brain is linked to the ability of young animals to learn behavioral patterns from adults.

Working around spinal injuries: Rehabilitation, drug treatment lets rats recover some involuntary movement

July 24, 2017
A new study in rats shows that changes in the brain after spinal cord injury are necessary to restore at least some function to lower limbs. The work was published recently in the journal eLife.

Scientists capture first image of major brain receptor in action

July 24, 2017
Columbia University Medical Center (CUMC) researchers have captured the first three-dimensional snapshots of the AMPA-subtype glutamate receptor in action. The receptor, which regulates most electrical signaling in the brain, ...

Research identifies new brain death pathway in Alzheimer's disease

July 24, 2017
Alzheimer's disease tragically ravages the brains, memories and ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer's disease is the sixth leading cause of death in the U.S., and a cure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.