Insights into the immune system, from the fates of individual T cells

March 20, 2013
The ex vivo analysis of complex immune responses relies on identifying molecules that are characteristic for certain cell types. The expression of multiple molecules can be analyzed in parallel, creating complex multidimensional data sets. These are generally analyzed using a set of two-dimensional data plots that derive from one another in a hierarchy. The detection of progeny cells derived from an individual ancestral T cell becomes possible through a combination of high-precision detection technology with analysis of very large biological samples: Plots displayed here contain multimensional information from more than 20,000 leukocytes. Credit: Photo by Uli Benz, copyright TU Muenchen

By charting the differing fates of individual T cells, researchers have shown that previously unpredictable aspects of the adaptive immune response can be effectively modeled. The crucial question: What determines which of the immune system's millions of cells will mobilize to fight an acute infection and which will be held back to survive long-term, forming the basis of the immunological memory? The scientists' findings, published in the journal Science, could have implications for improved immunotherapy and vaccination strategies.

The scientists found that the immediate immune response to an infection or tumor is mounted by a relatively tiny fraction of the so-called CD8+ T that are capable of recognizing the associated antigen. These few rapidly expand into giant populations of short-lived T cells targeted at killing infected cells or . Meanwhile the vast majority remain in smaller populations geared toward longevity, to help ensure that the immune system will remember the antigen when it appears again in the future.

"Up to now, it was only possible to observe groups of during the response to an infection," says Prof. Dirk Busch of the Technische Universitaet Muenchen (TUM). "We have developed technology that enables us to observe individual T cells." Together with innovative cell processing technology, the researchers brought theoretical and clinical expertise to bear on this investigation, a collaboration of TUM, the University of Heidelberg, the Helmholtz Center Munich, the German Cancer Research Center (DKFZ), and the National Center for Infection Research (DZIF).

Marking the threshold of predictability

A single T cell is theoretically capable of generating an by developing into diverse and expanding populations, fighting the as well as providing lasting memory for the future. But a fundamental question – whether an effective response is predetermined on the level of an individual T cell or emerges from the commingled fates of multiple cells – had never been put to the test. Another unresolved question concerned the order in which populations of short-lived killer cells and long-lived memory cells develop.

An immune response derived from a single T cell can be visualized directly ex vivo: Progeny of a specific single CD8 T cell is characterized by simultaneous expression of CD8 (x axis) and a defined heritable marker (y axis) setting it apart from all endogenous cells. Here every pixel stands for a cell. A color-coded heatmap indicates high (blue) and low cell density (red). The picture displays more than 20,000 cells, only a tiny fraction of which (within the black box) are derived from single transferred T cells. Credit: Photo by Uli Benz, copyright TU Muenchen.

To address these questions, researchers at TUM began by introducing specially marked T cells into mice and then triggering a specific immune reaction. Around seven days later, they were able to determine how many descendant cells, and what kinds, had been generated by individual T cells. Biomathematical modeling, using an approach co-developed with the group of Prof. Thomas Hoefer at Heidelberg, helped to explain what the data showed. "One can't predict which 'career paths' the descendants of an individual killer T cell will take, " says first author Veit Buchholz, a medical resident at TUM. "This is a matter of chance, like a single roll of the dice. To generate a predictable , we have found that a sample of at least 50 individual cells is needed."

From analysis of many of the huge populations of short-lived killer cells and the relatively tiny populations of long-lived memory cells, the researchers were able to reconstruct the ' development program and predict their behavior: All of the cells proceed along the same path of development, but they don't go the same distance. That is, the few cells that generate giant populations of short-lived infection fighters have gone through the same stage as those fated to produce memory cells – but they have left that stage behind to provide immediate protection.

Beyond the results themselves, another important outcome of this study is increased confidence in the combined power of the in vivo and in silico approaches. "The fact that the experimental results confirmed our predictions in detail has strongly supported our theory," says Prof. Hoefer, leader of the Heidelberg group.

There are several ways these findings could become important in the setting of human health, the researchers explain – in improving the effectiveness of against cancer, for example, or in optimizing treatment for older people, who tend to have significantly fewer copies of a given type of immune cell. "The future memory cell stands at the beginning of an expansion process with two extreme forms of differentiation," Buchholz says, "and ideally there should be a balance, so that the memory pool is not depleted. So we can think about how to tweak vaccination schemes to first allow expansion and not let differentiation kick in too early."

Explore further: How malaria evades the body's immune response

More information: Disparate individual fates compose robust CD8+ T cell immunity, Veit R. Buchholz, Michael Flossdorf, Inge Hensel, Lorenz Kretschmer, Bianca Weissbrich, Patricia Graef, Admar Verschoor, Matthias Schiemann, Thomas Hoefer, and Dirk H. Busch. Science 2013, DOI: 10.1126-science.1235454

Related Stories

How malaria evades the body's immune response

July 12, 2012
(Medical Xpress) -- The parasites that cause human malaria and make it particularly lethal have a unique ability to evade destruction by the body’s immune system, diminishing its ability to develop immunity and fight ...

Lasting T cell memories

March 5, 2012
The generation of new memories in the human immune system doesn't come at the cost of old ones, according to a study published on March 5th in the Journal of Experimental Medicine.

Early activation of immune response could lead to better vaccines

August 30, 2012
Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered a new "first response" mechanism that the immune system uses to respond to infection. The findings challenge the current understanding ...

Skin sentry cells promote distinct immune responses

July 21, 2011
A new study reveals that just as different soldiers in the field have different jobs, subsets of a type of immune cell that polices the barriers of the body can promote unique and opposite immune responses against the same ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.