Researchers spot molecular control switch for preterm lung disorders

March 20, 2013 by Karen N. Peart
Researchers spot molecular control switch for preterm lung disorders

(Medical Xpress)—Researchers at Yale School of Medicine have made major discoveries that could lead to new treatments for lung disorders in premature babies. In a mouse study, the team located key molecules that switch on stress pathways in preterm lung disorders, and also found that when parts of these pathways were blocked with a pain drug, lung damage was prevented or reversed.

The findings are published online ahead of print in the March issue of American Journal of Respiratory Cell and Molecular Biology.

Bronchopulmonary (BPD) is the most common in and does not have any specific treatment. The disorder affects about 97% of infants with birth weights below 1,250 grams, and can lead to repeated , as well as to emphysema and in adulthood.

A research team led by Dr. Vineet Bhandari, associate professor of pediatric neonatology and obstetrics, gynecology & reproductive sciences at Yale School of Medicine, theorized that if the molecules that cause these disorders can be blocked early on, they could essentially prevent lifelong lung problems.

Bhandari and his team studied the lung tissue of newborn mice. The team noted that when this lung tissue was exposed to hyperoxia —excess oxygen in tissues and organs that activates all components of the stress pathways in the newborn lung— there was a marked increase of cyclooxygenase 2 (Cox2) in the lung's stress pathways. This action resulted in BPD in mice. Once the team used a drug that inhibits Cox2, they were able to reverse BPD in mice.

"This is the first time hyperoxia has been comprehensively shown to be responsible for activating the stress pathway in developing lungs," said Bhandari. "Hyperoxia can induce interferon gamma and disrupt lung development, leading to BPD in mice. Once we used the Cox2 inhibitor Celecoxib, we were able to reverse the effects in the mouse BPD models. The drug, originally indicated to treat pain, protected the lungs from cell death, and was able to prevent destruction of and damage to the developing lung exposed to hyperoxia or excess interferon gamma in room air."

Bandari added that the findings suggest that Cox2 and or CHOP—a molecule important in the stress pathway—are potential new drug targets that can be inhibited to treat or prevent human BPD.

Bhandari said the next step is to conduct pre-clinical studies.

Explore further: Antibiotic may prove beneficial to preterm infant lung health

More information: Citation: Am. J. Respir. Cell. Mol. Biol. doi:10.1165/rcmb.2012-0381OC (March 2013)

Related Stories

Antibiotic may prove beneficial to preterm infant lung health

April 26, 2011
A study performed by University of Kentucky researchers shows promise for the use of azithromycin in treating Ureaplasma-colonized or infected premature infants to prevent bronchopulmonary dysplasia (BPD).

Reversing smoke-induced damage and disease in the lung

October 13, 2011
By studying mice exposed to tobacco smoke for a period of months, researchers have new insight into how emphysema and chronic obstructive pulmonary disease (COPD) develops. In the October 14th issue of Cell they also report ...

Five big strides to fight lung disease in our tiniest patients

December 4, 2012
For Ottawa scientist and neonatologist Dr. Bernard Thébaud, even a major paper that answers five significant questions still doesn't seem quite enough in his determined path to get his laboratory breakthrough into the neonatal ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.