Parkinson's brain rhythms suggest better way to treat disease with deep brain stimulation

March 4, 2013

A team of scientists and clinicians at UC San Francisco has discovered how to detect abnormal brain rhythms associated with Parkinson's by implanting electrodes within the brains of people with the disease.

The work may lead to developing the next generation of devices to alleviate symptoms for people with the disease.

Described this week in the journal (PNAS), the work sheds light on how Parkinson's disease affects the brain, and is the first time anyone has been able to measure a quantitative signal from the disease within the – the outermost layers of the brain that helps govern memory, physical movement and consciousness.

"Normally the individual cells of the brain are functioning independently much of the time, working together only for specific tasks," said neurosurgeon Philip Starr, MD, PhD, a professor of at UCSF and senior author of the paper. But in Parkinson's disease, he said, many display "excessive synchronization," firing together inappropriately most of the time.

"They are locked into playing the same note as everyone else without exploring their own music," Starr explained. This excessive synchronization leads to movement problems and other symptoms characteristic of the disease.

The new work also shows how deep brain stimulation (DBS), which electrifies regions deeper in the brain, below the cortex, can affect the cortex, itself. This discovery may change how DBS is used to treat Parkinson's and other neurologically based movement disorders, and it may help refine the technique for other types of treatment.

Functions Like a Pacemaker for the Brain

Over the last decade, doctors at UCSF and elsewhere have turned to deep brain stimulation to help people with Parkinson's disease and movement disorders like and primary dystonia, an extremely debilitating conditionthat causes painful, twisting .

In addition, deep brain stimulation is now being explored to treat psychiatric diseases like depression and obsessive-compulsive disorder.. Last year a team at UCLA showed that electrical stimulation of the temporal lobe in patients during learning activities helped them recall specific types of spatial information.

Similar to putting a pacemaker inside a heart patient's chest, deep brain stimulation requires a to implant electrodes inside tiny parts of the brain, to deliver electrical current.

In Parkinson's these electrodes are generally implanted in people who have mid-stage disease and cannot obtain full benefit from commonly used drugs due to complications – about 10- to 15-percent of all patients with the disease. For them, deep brain stimulation can free them of severe mobility problems and other symptoms, helping them live with much improved motor function for many years. Eventually the progressive nature of Parkinson's disease overwhelms the ability of deep brain stimulation to alleviate symptoms.

However, while doctors have witnessed for years the sometimes miraculous recovery of function that can come with one of these surgeries, said Starr, the odd thing is that nobody understands exactly why deep brain stimulation works. The prevailing hypothesis is that it alleviates symptoms by overriding the abnormal, "bad" brain circuitry, much like turning down the noise can increase the fidelity of a musical recording.

The new work supports this hypothesis. Working with 16 patients with Parkinson's disease and nine with cervical dystonia undergoing neurosurgical treatment over the past three years, Starr and his colleagues showed clearly how to detect excessive brain synchronization at the surface of the brain in people with Parkinson's disease and how can return those surface cells to their independent state.

Patients in the study consented to have temporary, flexible electrodes placed on their brain surface for a few hours during surgery, in addition to having the permanent deep stimulating electrodes implanted for long-term therapy.

The first author on the study is Coralie de Hemptinne, PhD, a postdoctoral fellow in Starr's laboratory. Patients were managed before and after surgery by study co-authors Jill Ostrem, MD, and Nicholas Galifianakis, MD, neurologists in the UCSF Surgical Movement Disorders (SMD) Center.

For controls, they compared the surface brain recordings of those 25 patients with nine more people who were undergoing surgery for epilepsy and did not have abnormal brain patterns while they were not having seizures.

The ability to monitor excessive brain synchronization on the surface of the brain points the way to next-generation brain stimulators that would be more sophisticated, Starr said. Right now most devices implanted into patients deliver continuous electrical stimulation. But modern heart pacemakers deliver jolts only when needed.

If DBS implants could be made to detect an abnormal signal in the surface of the brain and deliver their electrical stimulation only when needed, they might function better, require much less work from clinicians to adjust stimulator settings, and be able to automatically adjust stimulation levels to match changes in patient's movement symptoms. Symptoms can often vary greatly throughout the day, but existing DBS devices have no way to adjust themselves for changing conditions in the patient's brain.

The next step, said Starr, will be to find ways to detect these signals automatically with an implanted DBS device so that the electrical stimulator would respond automatically and flexibly to a patient's needs.

UCSF, Starr, and co-investigators hold a provisional patent titled "Detection of a cortical biomarker in movement disorders using a non-penetrating electrode."

Explore further: Less-invasive method of brain stimulation helps patients with Parkinson's disease

More information: "Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson's disease" by Coralie de Hemptinne, Elena S. Ryapolova-Webb, Ellen L. Air, Paul Garcia, Kai J. Miller, Jeffrey G. Ojemann, Jill L. Ostrem, Nicholas B. Galifianakis and Philip A. Starr, PNAS, 2013.

Related Stories

Less-invasive method of brain stimulation helps patients with Parkinson's disease

October 16, 2012
Electrical stimulation using extradural electrodes—placed underneath the skull but not implanted in the brain—is a safe approach with meaningful benefits for patients with Parkinson's disease, reports the October issue ...

UCSF neurosurgeons test new device for placing brain implants

April 13, 2011
A new MRI device that guides surgeons as they implant electrodes into the brains of people with Parkinson's disease and other neurological disorders could change the way this surgery, called deep brain stimulation, is performed ...

Chronic pain and shaking under control using 'pacemaker for the brain'

September 21, 2012
How does electrical stimulation affect the brain? A project by Aalto University and the University of Helsinki, launched in early 2012, studies the impact mechanism of deep brain stimulation and develops electrochemical sensors ...

Referring doctors increasingly aware of deep brain stimulation therapy; more work remains

August 16, 2011
While deep brain stimulation has gained recognition by referring physicians as a treatment for Parkinson's disease and other movement disorders, just half of the patients they recommend are appropriate candidates to begin ...

Recommended for you

Parkinson's is partly an autoimmune disease, study finds

June 21, 2017
Researchers have found the first direct evidence that autoimmunity—in which the immune system attacks the body's own tissues—plays a role in Parkinson's disease, the neurodegenerative movement disorder. The findings raise ...

Predicting cognitive deficits in people with Parkinson's disease

June 20, 2017
Parkinson's disease (PD) is commonly thought of as a movement disorder, but after years of living with PD approximately twenty five percent of patients also experience deficits in cognition that impair function. A newly developed ...

Pre-clinical study suggests Parkinson's could start in gut endocrine cells

June 15, 2017
Recent research on Parkinson's disease has focused on the gut-brain connection, examining patients' gut bacteria, and even how severing the vagus nerve connecting the stomach and brain might protect some people from the debilitating ...

Hi-res view of protein complex shows how it breaks up protein tangles

June 15, 2017
Misfolded proteins are the culprits behind amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and other neurodegenerative brain disorders. These distorted proteins are unable to perform their normal ...

CRISPR tech leads to new screening tool for Parkinson's disease

June 5, 2017
A team of researchers at the University of Central Florida is using breakthrough gene-editing technology to develop a new screening tool for Parkinson's disease, a debilitating degenerative disorder of the nervous system. ...

Infection with seasonal flu may increase risk of developing Parkinson's disease

May 30, 2017
Most cases of Parkinson's have no known cause, and researchers continue to debate and study possible factors that may contribute to the disease. Research reported in the journal npj Parkinson's Disease suggests that a certain ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Argiod
1 / 5 (1) Mar 04, 2013
Scenario: "Psst! Kid! Over here in the alley... I got the latest DBS hack... it's the world's greatest e-drug, and perfectly legal. I can set you up with a blackbox for hundred bucks; or I can turn you on to five minutes for ten..."

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.