Parkinson's disease protein gums up garbage disposal system in cells

March 28, 2013
Parkinson's Disease Protein Gums up Garbage Disposal System in Cells
Lewy bodies. Brown spots are immunostaining using an antibody specifically recognizing an abnormal form of alpha-synuclein. Credit: Kelvin C. Luk, Ph.D., Perelman School of Medicine, University of Pennsylvania

(Medical Xpress)—Clumps of α-synuclein protein in nerve cells are hallmarks of many degenerative brain diseases, most notably Parkinson's disease.

"No one has been able to determine if Lewy bodies and Lewy neurites, hallmark pathologies in Parkinson's disease can be degraded," says Virginia Lee, PhD, director of the Center for Neurodegenerative Disease Research, at the Perelman School of Medicine, University of Pennsylvania.

"With the new neuron model system of Parkinson's disease pathologies our lab has developed recently, we demonstrated that these aberrant clumps in cells resist degradation as well as impair the function of the macroautophagy system, one of the major garbage disposal systems within the cell."

Macroautophagy, literally self eating, is the degradation of unnecessary or dysfunctional cellular bits and pieces by a compartment in the cell called the lysosome.

Lee, also a professor of Pathology and Laboratory Medicine, and colleagues published their results in the early online edition of the Journal of Biological Chemistry this week.

Alpha-synuclein (α-syn ) diseases all have clumps of the protein and include Parkinson's disease (PD), and array of related disorders: PD with dementia , dementia with Lewy bodies, and multiple system atrophy. In most of these, α-syn forms insoluble aggregates of stringy that accumulate in the cell body and extensions of neurons.

These unwanted α-syn clumps are modified by abnormal attachments of many phosphate chemical groups as well as by the protein ubiquitin, a molecular tag for degradation. They are widely distributed in the , where they are associated with neuron loss.

Using cell models in which intracellular α-syn clumps accumulate after taking up synthetic α-syn fibrils, the team showed that α-syn inclusions cannot be degraded, even though they are located near the and the proteasome, another type of in the cell.

The α-syn aggregates persist even after soluble α-syn levels within the cell are substantially reduced, suggesting that once formed, the α-syn inclusions are resistant to being cleared. What's more, they found that α-syn aggregates impair the overall autophagy degradative process by delaying the maturation of autophagy machines known as autophagosomes, which may contribute to the increased cell death seen in clump-filled . Understanding the impact of α-syn aggregates on autophagy may help elucidate therapies for α-syn-related neurodegeneration.

Explore further: Seeds of destruction in Parkinson's disease: Spread of diseased proteins kills neurons

More information: www.jbc.org/content/early/2013 … 457408.full.pdf+html

Related Stories

Seeds of destruction in Parkinson's disease: Spread of diseased proteins kills neurons

October 5, 2011
New research suggests that small "seed" amounts of diseased brain proteins can be taken up by healthy neurons and propagated within them to cause neurodegeneration. The research, published by Cell Press in the October 6 issue ...

Parkinson's protein causes disease spread in animal model, suggesting way disorder progresses over time in humans

April 17, 2012
(Medical Xpress) -- Penn researchers have shown that brain tissue from a Parkinson's disease mouse model , as well as synthetically produced disease protein fibrils, injected into young, symptom-free PD mice led to spreading ...

Parkinson's disease protein causes disease spread and neuron death in healthy animals

November 15, 2012
Understanding how any disease progresses is one of the first and most important steps towards finding treatments to stop it. This has been the case for such brain-degenerating conditions as Alzheimer's disease. Now, after ...

Rare genetic disorder provides unique insight into Parkinson's disease

June 23, 2011
Massachusetts General Hospital investigators appear to have found the mechanism behind a previously reported link between the rare genetic condition Gaucher disease and the common neurodegenerative disorder Parkinson's disease. ...

Recommended for you

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

Scientists solve 3-D structure of key defense protein against Parkinson's disease

October 5, 2017
Scientists at the University of Dundee have identified the structure of a key enzyme that protects the brain against Parkinson's disease.

Novel protein interactions explain memory deficits in Parkinson's disease

September 26, 2017
A study published in the journal Nature Neuroscience describes the identification of a novel molecular pathway that can constitute a therapeutic target for cognitive defects in Parkinson's disease. The study showed that abnormal ...

Psychosis in Parkinson's dementia—new treatment provides hope

September 25, 2017
New research involving King's College London and the University of Exeter has highlighted the benefits of a promising new treatment which could relieve psychosis in thousands of people with dementia related to Parkinson's ...

Bicycling 'overloads' movement networks with Parkinson's

September 23, 2017
(HealthDay)—Bicycling suppresses abnormal beta synchrony in the Parkinsonian basal ganglia, according to a study published online Sept. 11 in the Annals of Neurology.

Researchers find new path to promising Parkinson's treatment

September 19, 2017
Three researchers at The University of Alabama are part of work that is leading to a new direction for drug discovery in the quest to treat Parkinson's disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.