Getting a grip on hand function: Researchers discover spinal cord circuit that controls our ability to grasp

April 10, 2013
Drs. Rob Brownstone and Tuan Bui.

Dalhousie neurosurgeon and scientist Dr. Rob Brownstone and postdoctoral fellow Dr. Tuan Bui have identified the spinal cord circuit that controls the hand's ability to grasp. This breakthrough finding opens the door to the possibility of restoring hand function with treatments that target this spinal cord circuit. The world's leading neuroscience journal, Neuron, will publish the researchers' finding online at 12 noon EST on Wednesday, April 10.

Drs. Brownstone and Bui have found that a group of neurons in the —called dI3 interneurons—assess information from in the hands in order to send appropriate signals to in the spinal cord, and hence to the muscles, to control the hands' grip. If this circuit is disrupted—as in spinal cord injuries and neurodegenerative diseases like Alzheimer's disease—a person will be unable to hold onto objects or unable to let them go.

Our ability to control our hands and pick up objects using the right amount of force depends on the tightly regulated transmission of signals among in the hands, spinal cord and brain. How we regulate this force has not been known until this discovery by Drs. Brownstone and Bui.

"This spinal cord circuit allows us to subtly and unconsciously adjust our grasp so we apply the right amount of force to whatever we're holding. This mechanism is disrupted in spinal cord injuries, which can completely eliminate the ability to grasp, and in neurodegenerative diseases, which can lead to an uncontrollable reflexive grasp so that people grab and can't let go of whatever they touch" says Dr. Brownstone.

, brain injuries and affecting the brain and/or spinal cord can all impair hand function, with devastating effects on independence and ability to function in daily life. People with quadriplegia ranked hand function #1, when asked in a 2004 survey which function they would most want to recover if they could. They rated hand function well above trunk stability, walking, sexual function, bladder and bowel control, and normal sensation.

Drs. Brownstone and Bui were testing a spinal cord circuit they believed played a role in walking when they discovered it controls the hand grasp instead. This observation occurred around the same time that Dr. Brownstone met a patient in his neurosurgery clinic who was unable to control her grasp. When she took his hand, she was unable to let go—he had to peel away her fingers to release his hand. He and Dr. Bui were struck by the implications of their observations and embarked on a series of experiments, with collaborators at Columbia University in New York City, to validate the finding.

Explore further: New research identifies changes to the brain in patients with spinal cord compression

Related Stories

New research identifies changes to the brain in patients with spinal cord compression

December 16, 2011
Spinal degeneration is an unavoidable part of aging. For some, it leads to compression of the spinal cord which can cause problems with dexterity, numbness in the hands, the ability to walk, and in some cases, bladder and ...

Evidence for spinal membrane as a source of stem cells may advance spinal cord treatment

October 28, 2011
Italian and Spanish scientists studying the use of stem cells for treating spinal cord injuries have provided the first evidence to show that meninges, the membrane which envelops the central nervous system, is a potential ...

Hand use improved after spinal cord injury with noninvasive stimulation

November 29, 2012
By using noninvasive stimulation, researchers were able to temporarily improve the ability of people with spinal cord injuries to use their hands. The findings, reported on November 29th in Current Biology, a Cell Press publication, ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.