Researchers find link between blood clotting, immune response

April 1, 2013, Rice University
Von Willebrand factor (VWF) (green) is a long, thin protein that promotes blood clot formation. One end of VWF stays anchored to the blood vessel wall, while the rest unfurls like a sticky streamer, attracting platelets. Credit: Nancy Turner/Rice University

Rice University researchers have found an unexpected link between a protein that triggers the formation of blood clots and other proteins that are essential for the body's immune system. The find could lead to new treatments for thousands of patients who suffer from inflammatory diseases and disorders that cause abnormal blood clotting.

The research is available online in the journal PLOS ONE.

"This link opens the door for studying severe, debilitating inflammatory disorders where the disease mechanism is still poorly understood, including lupus, , regional ileitis and ulcerative colitis, as well as ," said study co-author Dr. Joel Moake, a hematologist and senior research scientist in bioengineering at Rice. "There's clinical evidence that clotting and inflammation are somehow linked in many patients, even in the absence of an infection. This linkage could help explain some of the clinical cases that have long baffled physicians."

The link is biochemical. Nancy Turner, a research technician in Moake's lab, established the link after conducting hundreds of experiments on more than a dozen proteins, including key molecules involved with both clotting and the body's .

"In addition to the , there's also a logical basis for this connection," Moake said. "Clotting is a type of wound response, and wounds are magnets for infection, so there could be a selective advantage in triggering both responses at the same time."

But the link could also have a downside. For example, if a person has a genetic mutation or acquired disorder that causes their blood to clot more often or more extensively than normal, the overactive clotting could lead to the kind of inflammation that would typically be caused by an infection. Furthermore, initiation of the clotting process may initiate clinical in patients susceptible to various types of severe inflammatory disease.

In fact, the symptoms in the above scenarios are not uncommon. For example, in prior research, Moake's lab conducted pioneering research on two disorders: thrombotic thrombocytopenic purpura (TTP), which causes clots to form in small blood vessels throughout the body; and hemolytic uremic syndrome (HUS), which causes abnormal blood clots in the kidneys. Both HUS and TTP come in two varieties—one that is triggered by infection or inappropriate antibody formation, and another that is hereditary. Moake said the newfound link between clot formation and the immune response could help improve the diagnosis and treatment for TTP, HUS and other puzzling blood disorders with similar symptoms.

A strand of the clot-forming protein von Willebrand factor (VWF) glows brightly (green) under a microscope. The VWF is bound to many fluorescently labeled complement proteins called C3 (red dots), which are a part of the innate immune system. Credit: Nancy Turner/Rice University

The experiments Turner used to establish the link between clotting and the body's immune response involved a key clotting protein called von Willebrand factor (VWF) and about a dozen other proteins that are components of the "complement system." The complement system, a part of the body's innate immune system, is one of biology's most ancient forms of defense against invading pathogens.

The complement system consists of a series of proteins that are produced by a variety of cell types. These proteins circulate continuously in the bloodstream and react sequentially upon activation. When triggered, the complement component proteins join together to form a biological weapon called the "membrane attack complex" (MAC), which kills both invading bacteria and the body's own cells if they become infected or damaged.

Turner and Moake first thought of looking for the link more than two years ago after they collaborated with physicians at Texas Children's Hospital on several puzzling clinical cases. Turner designed and conducted a series of experiments to examine whether any of the proteins in the complement complex were likely to bind onto long strands of VWF. Each complement protein was detected with a specific antibody and a fluorescent tag that could be viewed with a specialized microscope.

She found that C3, an important complement pathway initiator protein, was produced by cells in such low concentration that it was almost impossible to see—even with a fluorescent microscope. But that changed when she looked at experimental samples that contained both C3 and VWF.

"The signals were so clear," Turner recalled. "The VWF had so much C3 on it that it looked like a Christmas tree."

Moake said he and Turner are conducting follow-up research to measure more effectively the activation of C3 on VWF. They are also measuring whether the C3 activation stimulates the sequential cascade of reactions that leads to MAC formation. In particular, they are interested in studying how the connection might lead to autoimmune diseases by causing MAC to target the body's own healthy cells rather than sick or damaged cells.

"We'd like to know what happens on a cell's surface that ordinarily enables it to protect itself against MAC," Moake said. "We'd also like to know what can go wrong with cells in terms of sickness or trauma that might make them more susceptible to being attacked and killed by overactivation of the complement sequence during clotting."

Explore further: Evolution provides clue to blood clotting

More information: dx.plos.org/10.1371/journal.pone.0059372

Related Stories

Evolution provides clue to blood clotting

July 20, 2011
A simple cut to the skin unleashes a complex cascade of chemistry to stem the flow of blood. Now, scientists at Washington University School of Medicine in St. Louis have used evolutionary clues to reveal how a key clotting ...

Reasons for severe bleeding in hemophilia revealed

November 20, 2012
New insights into what causes uncontrollable bleeding in hemophilia patients are provided in a study published by Cell Press on November 20th in the Biophysical Journal. By revealing that blood clots spread in traveling waves ...

Recommended for you

Novel genomic tools provide new insight into human immune system

January 19, 2018
When the body is under attack from pathogens, the immune system marshals a diverse collection of immune cells to work together in a tightly orchestrated process and defend the host against the intruders. For many decades, ...

Genomics reveals key macrophages' involvement in systemic sclerosis

January 18, 2018
A new international study has made an important discovery about the key role of macrophages, a type of immune cell, in systemic sclerosis (SSc), a chronic autoimmune disease which currently has no cure.

First vaccine developed against grass pollen allergy

January 18, 2018
Around 400 million people worldwide suffer in some form or other from a grass pollen allergy (rhinitis), with the usual symptoms of runny nose, cough and severe breathing problems. In collaboration with the Viennese firm ...

Researchers discover key driver of atopic dermatitis

January 17, 2018
Severe eczema, also known as atopic dermatitis, is a chronic inflammatory skin condition that is driven by an allergic reaction. In their latest study, researchers at La Jolla Institute reveal an important player that promotes ...

Who might benefit from immunotherapy? New study suggests possible marker

January 16, 2018
While immunotherapy has made a big impact on cancer treatment, the fact remains that only about a quarter of patients respond to these treatments.

Researchers identify new way to unmask melanoma cells to the immune system

January 16, 2018
system, which enables these deadly skin cancers to grow and spread.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.