Researchers confirm multiple genes robustly contribute to schizophrenia risk in replication study

April 9, 2013, Virginia Commonwealth University

Multiple genes contribute to risk for schizophrenia and appear to function in pathways related to transmission of signals in the brain and immunity, according to an international study led by Virginia Commonwealth University School of Pharmacy researchers.

By better understanding the molecular and involved with schizophrenia, scientists hope to use this new genetic information to one day develop and design drugs that are more efficacious and have fewer side effects.

In a study published online in the April issue of JAMA Psychiatry, the Network journal, researchers used a comprehensive and unique approach to robustly identify genes and biological processes conferring risk for schizophrenia.

The researchers first used 21,953 subjects to examine over a million genetic markers. They then systematically collected results from other kinds of biological schizophrenia studies and combined all these results using a novel data integration approach.

The most promising were tested again in a large collection of families with , a design that avoids pitfalls that have plagued of schizophrenia in the past. The genes they identified after this comprehensive approach were found to have involvement in , nerve cell development and immune response.

"Now that we have genes that are robustly associated with schizophrenia, we can begin to design much more specific experiments to understand how disruption of these genes may affect and function," said principal investigator Edwin van den Oord, Ph.D., professor and director of the Center for Biomarker Research and Personalized Medicine in the Department of Pharmacotherapy and Outcomes Science at the VCU School of Pharmacy.

"Also, some of these genes provide excellent targets for the development of ," he said.

One specific laboratory experiment currently underway at VCU to better understand the function of one of these genes, TCF4, is being led by Joseph McClay, Ph.D., a co-author on the study and assistant professor and laboratory director in the VCU Center for Biomarker Research and Personalized Medicine. TCF4 works by switching on other genes in the brain. McClay and colleagues are conducting a National Institutes of Health-funded study to determine all genes that are under the control of TCF4. By mapping the entire network, they aim to better understand how disruptions to TCF4 increase risk for schizophrenia.

"Our results also suggest that the novel data integration approach used in this study is a promising tool that potentially can be of great value in studies of a large variety of complex genetic disorders," said lead author Karolina A. Aberg, Ph.D., research assistant professor and laboratory co-director of the Center for Biomarker Research and Personalized Medicine in the VCU School of Pharmacy.

Explore further: Smokers could be more prone to schizophrenia, study finds

Related Stories

Smokers could be more prone to schizophrenia, study finds

March 26, 2012
Smoking alters the impact of a schizophrenia risk gene. Scientists from the universities of Zurich and Cologne demonstrate that healthy people who carry this risk gene and smoke process acoustic stimuli in a similarly deficient ...

Schizophrenia genes increase chance of IQ loss

February 21, 2013
People who are at greater genetic risk of schizophrenia are more likely to see a fall in IQ as they age, even if they do not develop the condition.

Understanding Schizophrenia

November 16, 2011
(Medical Xpress) -- Genetic mutations that cause schizophrenia could be linked to systems in the brain responsible for learning and memory, a major University study suggests.

Researchers identify key genes and prototype predictive test for schizophrenia

May 15, 2012
An Indiana University-led research team, along with a group of national and international collaborators, has identified and prioritized a comprehensive group of genes most associated with schizophrenia that together can generate ...

Does immune dysfunction contribute to schizophrenia?

October 10, 2012
A new study reinforces the finding that a region of the genome involved in immune system function, called the major histocompatibility complex (MHC), is involved in the genetic susceptibility to schizophrenia.

Recommended for you

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.