Omega-3 fatty acids more effective at inhibiting growth of triple-negative breast cancer

April 9, 2013

Researchers from Fox Chase Cancer Center have found that omega-3 fatty acids and their metabolite products slow or stop the proliferation, or growth in the number of cells, of triple-negative breast cancer cells more effectively than cells from luminal types of the disease. The omega-3s worked against all types of cancerous cells, but the effect was observed to be stronger in triple-negative cell lines, reducing proliferation by as much as 90 percent. The findings will be presented at the AACR Annual Meeting 2013 on Tuesday, April 9.

are found in like sardines and salmon, and also in oils derived from plants like hemp and flax. Previous studies suggest these compounds can negatively affect critical mechanisms in cancer cells, namely those responsible for proliferation and for apoptosis, or . Lead author on the study Thomas J. Pogash, a scientific technician in the Fox Chase Cancer Center lab of Jose Russo, MD, says the new work underscores the important role common compounds found in food may play in keeping cancer at bay.

"Diet can play a critical role in breast cancer prevention," says Pogash. "When you compare a to a , which has more omega-3s, you see less cancer in the mediterranean diet. They eat much more fish."

Breast cancer is a heterogeneous group of cancers comprising diseases that differ on the molecular level. Patients with different types of breast cancer respond differently to treatments. Four distinct categories of the disease are generally recognized. Two of those, luminal A and luminal B, grow in the luminal cells that line milk ducts in the breast and have receptors for estrogen and progesterone (prognosis is generally better for patients with luminal A than with luminal B). A third category includes tumors that test positive for the .

Tumors in the fourth category, triple-negative, lack receptors for progesterone, estrogen, and a protein called HER2/neu. As a result, this type of disease is insensitive to treatments like trastuzumab, which disrupts the HER2 receptor, and tamoxifen, which targets the estrogen receptor.

Russo notes that no targeted therapies are currently available for patients diagnosed with triple-negative breast cancer. Combination chemotherapies are the standard of care for early-stage disease.

"This type of cancer, which is found more frequently in Latina and African-American women, is highly aggressive and has a low survival rate," says Russo. "There is not any specific treatment for it."

When a cancer cell digests omega-3s, the fatty acid is broken down into smaller molecules called metabolites. Russo, Pogash, and their colleagues tested the effect of large omega-3 parent molecules, as well as their smaller metabolic derivatives, on three luminal and seven lines that included basal-type triple-negative cells.

Omega-3 and its metabolites were observed to inhibit proliferation in all cell lines, but the effect was dramatically more pronounced in the triple-negative cell lines. In addition, the metabolites of omega-3 reduced the motility, or ability to move, by 20-60 percent in the triple-negative basal cell lines.

This study is part of a consortium between Fox Chase Cancer Center and Pennsylvania State University under a five-year grant awarded by the Komen Foundation. Russo is the principal investigator of the project at Fox Chase. Andrea Manni, MD, leader of the Pennsylvania State University team, has extended this work to animal models, studying the anticancer effects of omega-3s and its metabolites on mouse models of triple-negative breast cancer.

Russo and his colleagues are working on two related projects, one on the role of epigenetic events in the mechanism of cell transformation and another on the potential action of peptides of the hormone human chorionic gonadotropin (hCG) on prevention.

Explore further: Researchers find that fish oil boosts responses to breast cancer drug tamoxifen

Related Stories

Researchers find that fish oil boosts responses to breast cancer drug tamoxifen

April 6, 2011
Breast cancer is the second most common cancer among women, with more than 200,000 women diagnosed each year. Being exposed to estrogen over a long period of time is one factor that can increase a woman's risk of developing ...

Older patients with certain breast cancer subtype may not benefit from radiation therapy

April 2, 2012
Local breast radiation therapy may not be necessary for women with the luminal A subtype of breast cancer, particularly those aged older than 60, according to study results presented at the AACR Annual Meeting 2012, held ...

Paragazole excels in preclinical models of triple-negative breast cancer

April 8, 2013
Breast cancers that lack estrogen receptors are more difficult to treat than ER+ cancers. Research presented at the AACR Annual Meeting 2013 demonstrates an investigational drug, Paragazole, that makes triple-negative breast ...

Black women have worse breast cancer mortality regardless of cancer subtype

April 8, 2013
Black women with breast cancer had significantly worse survival compared with other racial and ethnic groups across cancer subtypes, which suggests that the survival differences are not solely attributable to the fact that ...

Breast cancer recurrence defined by hormone receptor status

October 1, 2012
Human epidermal growth factor (HER2) positive breast cancers are often treated with the same therapy regardless of hormone receptor status. New research published in BioMed Central's open access journal Breast Cancer Research ...

Recommended for you

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

Combining CAR T cells with existing immunotherapies may overcome resistance in glioblastomas

July 19, 2017
Genetically modified "hunter" T cells successfully migrated to and penetrated a deadly type of brain tumor known as glioblastoma (GBM) in a clinical trial of the new therapy, but the cells triggered an immunosuppressive tumor ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.