Researchers engineer 'protein switch' to dissect role of cancer's key players

April 10, 2013, University of North Carolina Health Care
At top is a structural model of uniRapR domain which binds small molecule rapamycin. The bottom left depicts inactive state of the protein of interest modified with uniRapR domain. Binding of rapamycin and uniRapR reactivates the protein (bottom right). Credit: Dokholyan Lab, UNC School of Medicine

Researchers at the University of North Carolina at Chapel Hill School of Medicine have "rationally rewired" some of the cell's smallest components to create proteins that can be switched on or off by command. These "protein switches" can be used to interrogate the inner workings of each cell, helping scientists uncover the molecular mechanisms of human health and disease.

In the first application of this approach, the UNC researchers showed how a protein called Src kinase influences the way extend and move, a previously unknown role that is consistent with the protein's ties to and metastasis.

"This rationally designed control of protein conformations represents a breakthrough in computational ," said senior study author Nikolay Dokholyan, PhD, a professor of biochemistry and biophysics. "We now have a new tool for delineating the activities of various proteins in living cells in a way that was never before possible."

The research was published online ahead of print in the Proceedings of the National Academy of Sciences. In the study, Dokholyan created a "switch" that would make a protein wobbly and unable to do its job unless it was flipped "on" by a drug called , which would stabilize the protein and let it perform its function.

The approach is a simpler and more reliable version of a system pioneered three years ago by Dokholyan and Klaus Hahn, professor of pharmacology at UNC, called rapamycin regulated or RapR. In the old approach, the switching mechanism depended on two proteins and the drug. The first protein – the one the researchers wanted to study – was given the RapR modification and put in cells in tissue culture. The second protein was placed in the cells as well, but simply floated around until the addition of drug caused it to latch on to the modification in the first protein and turn it on. The problem with the approach was that some cells would have a lot of the first protein and less of the second, or vice versa.

"It became the Achilles heel of the technique, because there was variability in the results due to the different ratios between the proteins," said Hahn. "What Dokholyan was able to do, which was extremely challenging from a protein engineering standpoint, was to combine the two parts into one."

Dokholyan and his colleagues took the two proteins and broke them apart into their individual components, structures called alpha helices and beta sheets. They then rewired them together to make a whole new protein where the parts could interact with each other. When researchers compared this system, called uniRapR, with the previous approach, they found the new one gave cleaner, more reliable and more consistent results.

They then applied the technique to study Src kinase, a protein involved in the metastasis or spread of tumor cells. Scientists had postulated that Src kinase plays a role in cell motility, but previous methods have not allowed them to isolate its activity from other similar proteins.

Working both in cultured human cells and in the model organism zebrafish, the researchers showed that turning on Src causes the cell to extend its edges as part of cell movement. Now that they have dissected the role of one , the researchers plan to look at a variety of other kinases to understand their roles in the development, progression, and spread of cancer.

Explore further: Discovery that specific protein modification important in cancer development

Related Stories

Discovery that specific protein modification important in cancer development

February 1, 2013
All proteins are made from chains of amino acids and their functions can be modified by adding small molecules to specific amino acids. One such modification is the addition of a methyl group, which is made of one carbon ...

Map of substrate-kinase interactions may lead to more effective cancer drugs

March 27, 2012
(Medical Xpress) -- Later-stage cancers thrive by finding detours around roadblocks that cancer drugs put in their path, but a Purdue University biochemist is creating maps that will help drugmakers close more routes and ...

Recommended for you

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.